Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

    Littelfuse Unveils High-Use Tactile Switches with 2 Million Cycle Lifespan

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

    Littelfuse Unveils High-Use Tactile Switches with 2 Million Cycle Lifespan

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

AC Line Filters and Insertion Loss Explained

3.1.2024
Reading Time: 3 mins read
A A

A capacitor is a crucial part of all AC line filters, and much of their performance depends on it. The performance of a capacitor to get rid of unwanted electromagnetic signals is usually referred to as insertion loss. On the following pages, we’ll take a closer look at the questions of electromagnetic noise and insertion loss in electric filters.

AC Line Filters’ Primary Purpose Is to Curb EMI

Electromagnetic interference, also shortened as EMI, is an undesired signal that has a negative impact on the electric circuit performance and can even damage it in some cases. There are interferences with both artificial (man-made) and natural origins.

RelatedPosts

Bourns Extends Rotational Life Option for its Guitar Potentiometer

Modeling and Simulation of Leakage Inductance

Power Inductor Considerations for AI High Power Computing – Vishay Video

These possible sources of EMI include lightning and storms, solar flares, motors, radar transmitters, power converters and many other devices, including cell phones (there is even a question of their possible disruption of hospital equipment).

A line filter is a device that is meant to reduce the EMI, allowing other devices in the circuit to function properly.

Though most electronic appliances come equipped with their own noise filters, there are cases in which an external filter has to be introduced – for example in unconventional mains.

How does the Whole Thing Work?

A key part in the performance of a filtering circuit is the configuration of elements that make it up, most notably the inductors and capacitors.

The most basic filter, known as the C filter, is made up of just a one feed-through capacitor. Of course, a performance of such a filter is significantly diminished. By increasing the number of inductors and capacitors and combining them in various configurations, much better performance can be achieved.

Insertion Loss and Its Importance in the Filtering Process

This is one of the chief parameters to take into account when selecting an EMI filter. An EMI filter insertion loss can be summed up as the ratio of before/after voltage once a filter has been introduced. The insertion loss is given in decibels.

There are many factors influencing the insertion loss, such as electrical configuration, circuit and source impedance, load current, and more. Let’s take a look at some of them at least.

Components Configuration

As mentioned previously, the single elements can reduce the EMI somewhat, but most filters will usually consist of several of them. A one-element filter can achieve a 20 dB insertion loss (in theory), but introducing the second element can almost double this number, not to mention adding more.

Naturally, multiple-element filters are then needed whenever a high performance is required.

Circuit Impedance

The performance of the filter is also influenced by the impedances of the source and load. One must always consider these when thinking about the optimal configuration of capacitive and inductive elements.

Load Current

Will also will have its impact on the filter’s insertion loss, based on the quality and material of the filtering parts. For example, when using ferrite inductors, some insertion loss can occur based on which material is used.

Hopefully, by now you have a better understanding of what the AC filters are, what is EMI, what is insertion loss and some factors that affect it. Feel free to elaborate further on this theme in the comments if you’re a specialist in this field – it will be a welcome addition to this article!

Related

Source: Knnit

Recent Posts

Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

6.5.2025
39

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
48

Tariffs Crush Sales Sentiment in April 2025 ECST Results

5.5.2025
65

Solid State Polymer Multilayer Capacitors For High Temperature Application

2.5.2025
34

Graphene-Based BOSC Bank Of Supercapacitor Cells

2.5.2025
13

Hybrid Energy Storage System for Nanosatellite Applications

1.5.2025
9

COTS-Plus Bulk Tantalum Capacitor for LEO Flight Platforms

29.4.2025
38

Würth Elektronik Offers New Power Supplies Development Kit

29.4.2025
37

High Energy Density Supercapacitors for Space Applications

28.4.2025
36

Layer-By-Layer Printed Film Dielectrics For Energy Efficient Space Systems

28.4.2025
12

Upcoming Events

May 14
11:00 - 12:00 CEST

Reliable RIGID.flex PCBs for Critical Applications – Made in Europe

May 14
17:00 - 17:30 CEST

Calculating Foil Winding Losses with AI

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • NTC/PTC Thermistors LTSpice Simulation; Vishay Video Part I

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • RLC Circuit Switching Response Explained

    0 shares
    Share 0 Tweet 0
  • Transformer Optimal Operating Frequency for Phase-Shifted Full-Bridge Converter

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version