Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Wk 42 Electronics Supply Chain Digest

    Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

    September 2025 ECIA US Components Sales Sentiment Continues in Optimism

    Bourns Release Automotive 4-Terminal Shunt Resistors

    Bourns Releases High Inductance Common Mode Choke

    Vishay Releases Automotive TO-220 Case 50W Thick Film Power Resistor

    High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

    Bourns Releases High Clearance and Creepage 1500VDC Power Transformer

    KYOCERA AVX Expands Stacked MLCC Capacitors Offering

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Wk 42 Electronics Supply Chain Digest

    Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

    September 2025 ECIA US Components Sales Sentiment Continues in Optimism

    Bourns Release Automotive 4-Terminal Shunt Resistors

    Bourns Releases High Inductance Common Mode Choke

    Vishay Releases Automotive TO-220 Case 50W Thick Film Power Resistor

    High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

    Bourns Releases High Clearance and Creepage 1500VDC Power Transformer

    KYOCERA AVX Expands Stacked MLCC Capacitors Offering

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

AVX Fuels Next Generation of Clemson Vehicle Prototyping Through Deep Orange

12.7.2019
Reading Time: 3 mins read
A A

Source: AVX news

FOUNTAIN INN, S.C. (July 11, 2019) – AVX Corporation, a leading manufacturer and supplier of advanced electronic components and interconnect, sensor, control, and antenna solutions, will fuel the next chapter of Clemson University’s flagship vehicle prototype program Deep Orange with new equipment and lab space at the Clemson University International Center for Automotive Research (CU-ICAR).

RelatedPosts

Wk 42 Electronics Supply Chain Digest

Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

September 2025 ECIA US Components Sales Sentiment Continues in Optimism

The 9,000-square foot lab – named the AVX Mobility Systems Innovation Lab – will include two collaborative innovation studios, expanded prototyping capabilities, and state-of-the-art engineering equipment within the Center for Emerging Technologies at CU-ICAR in Greenville. Capabilities include a new two-post lift; high-powered metal and tungsten inert gas welding capabilities; and painting and composites equipment to help students design, engineer, build, and validate their vehicle prototypes from the ground up.

“With the electrification of vehicles and further, sustainable mobility solutions, we see support of Deep Orange vehicle prototyping as a natural fit for AVX,” said Jeff Schmersal, chief operating officer of AVX Corporation. “The graduate students’ have fantastic ideas regarding the design and function of future automobiles and we are excited to provide the equipment and space needed to bring those ideas to reality.”

The lab builds on the success of the Deep Orange program, which is now in its 11th year. As part of their master’s in automotive engineering, Deep Orange students gain hands-on experience through project-based learning focused on systems integration and innovation by building a vehicle concept from the ground up. These students work directly with industry partners to address real-world problems related to sustainable mobility as well as current and future social trends.

“Our goal with Deep Orange is to educate the next generation of engineering leaders with technical and collaborative tools to develop solutions to tomorrow’s mobility challenges,” said Chris Paredis, BMW Endowed Chair in Automotive Systems Integration and Deep Orange program director. “The state-of-the-art equipment and collaborative spaces in this lab open up possibilities for innovation that we simply didn’t have before.”

The new lab makes it possible for both concurrent Deep Orange teams to be located in the same lab space, allowing them to share and learn from each other during the program. Students from Deep Orange 10 and 11 will be the first to take advantage of the lab, which will be home to the program going forward.

“For the first time in our program’s history, our students can work and learn alongside each other across different cohorts. Such sharing of knowledge and ideas will accelerate the education, engineering and innovation process that will fuel the next decade of Deep Orange,” said Paredis. “With a program as rapid and all-encompassing as ours, this type of cross-collaboration is invaluable when it comes to shaping the engineering leaders we want to develop.”

“AVX and Clemson have a longstanding, multifaceted partnership that speaks volumes about what the company thinks of our talented students and faculty, “ said Zoran Filipi, chair of the Department of Automotive Engineering. “CU-ICAR is on the cutting edge in terms of preparing our students for tomorrow’s automotive careers, and we are grateful for AVX Corporation’s generous contribution.”

This partnership was developed through Clemson’s Office of Corporate Partnerships and Strategic Initiatives. AVX Corporation is a strategic corporate partner of the University and the AVX lab is the newest addition to CU-ICAR’s innovation ecosystem and will be surrounded by 20+ global campus partners.

“Our global reputation is a direct result of successful strategic partnerships with industry leaders. Collaborations with companies such as AVX show the breadth and depth these partnerships can attain,” said Jack Ellenberg, associate vice president for the Office of Corporate Partnerships and Strategic Initiatives. “From OEMs to suppliers and beyond, our team’s success is directly tied to our ability to support our partners and support South Carolina.”

———-

Deep Orange
Deep Orange is a flagship program of Clemson’s two-year master’s program in automotive engineering. The program provides students with experience in market analysis, target customer profiles, vehicle design, prototyping, and manufacturing while balancing costs and design targets in an aggressive timeline. The innovative vehicle prototype program encourages students to push the boundaries of conventional design and engineering.

Clemson University International Center for Automotive Research (CU-ICAR)
The Clemson University International Center for Automotive Research (CU-ICAR) is a 250-acre advanced-technology research campus where university, industry and government organizations collaborate. CU-ICAR offers master’s and Ph.D. programs in automotive engineering and is conducting leading-edge applied research in critical areas, such as advanced product-development strategies, sustainable mobility, intelligent manufacturing systems and advanced materials. CU-ICAR has industrial-scale laboratories and testing equipment in world-class facilities available for commercial use.

 

Related

Recent Posts

Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

20.10.2025
1

Bourns Release Automotive 4-Terminal Shunt Resistors

17.10.2025
13

Vishay Releases Automotive TO-220 Case 50W Thick Film Power Resistor

16.10.2025
8

KYOCERA AVX Expands Stacked MLCC Capacitors Offering

14.10.2025
31

YAGEO Unveils Compact 3.6kW LLC Transformer for OBC EV Charging

13.10.2025
129

KYOCERA Releases Shielded Board-to-Board Connectors for Reliable EMI Protection

13.10.2025
24

Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

10.10.2025
55

Enhancing Energy Density in Nanocomposite Dielectric Capacitors

9.10.2025
35

Advances in the Environmental Performance of Polymer Capacitors

8.10.2025
63

Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

2.10.2025
27

Upcoming Events

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 20
8:00 - 17:00 CEST

PCB Design: Impedance is for everyone!

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version