Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Transformer Safety IEC 61558 Standard

    ESR of Capacitors, Measurements and Applications

    Murata Christophe Pottier Appointed President of EPCIA

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    YAGEO Unveils Compact 2.4 GHz SMD Antenna

    KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

    Molex Releases Industry-First Quad-Row Board-to-Board Connectors with EMI Shields

    Image credit: Samtec

    How to Match the Right Connector with Protocol Requirements

    Smoltek CNF-MIM Capacitors Pass 1,000h Reliability Test

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Transformer Safety IEC 61558 Standard

    ESR of Capacitors, Measurements and Applications

    Murata Christophe Pottier Appointed President of EPCIA

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    YAGEO Unveils Compact 2.4 GHz SMD Antenna

    KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

    Molex Releases Industry-First Quad-Row Board-to-Board Connectors with EMI Shields

    Image credit: Samtec

    How to Match the Right Connector with Protocol Requirements

    Smoltek CNF-MIM Capacitors Pass 1,000h Reliability Test

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

AVX Fuels Next Generation of Clemson Vehicle Prototyping Through Deep Orange

12.7.2019
Reading Time: 3 mins read
A A

Source: AVX news

FOUNTAIN INN, S.C. (July 11, 2019) – AVX Corporation, a leading manufacturer and supplier of advanced electronic components and interconnect, sensor, control, and antenna solutions, will fuel the next chapter of Clemson University’s flagship vehicle prototype program Deep Orange with new equipment and lab space at the Clemson University International Center for Automotive Research (CU-ICAR).

RelatedPosts

Transformer Safety IEC 61558 Standard

ESR of Capacitors, Measurements and Applications

Murata Christophe Pottier Appointed President of EPCIA

The 9,000-square foot lab – named the AVX Mobility Systems Innovation Lab – will include two collaborative innovation studios, expanded prototyping capabilities, and state-of-the-art engineering equipment within the Center for Emerging Technologies at CU-ICAR in Greenville. Capabilities include a new two-post lift; high-powered metal and tungsten inert gas welding capabilities; and painting and composites equipment to help students design, engineer, build, and validate their vehicle prototypes from the ground up.

“With the electrification of vehicles and further, sustainable mobility solutions, we see support of Deep Orange vehicle prototyping as a natural fit for AVX,” said Jeff Schmersal, chief operating officer of AVX Corporation. “The graduate students’ have fantastic ideas regarding the design and function of future automobiles and we are excited to provide the equipment and space needed to bring those ideas to reality.”

The lab builds on the success of the Deep Orange program, which is now in its 11th year. As part of their master’s in automotive engineering, Deep Orange students gain hands-on experience through project-based learning focused on systems integration and innovation by building a vehicle concept from the ground up. These students work directly with industry partners to address real-world problems related to sustainable mobility as well as current and future social trends.

“Our goal with Deep Orange is to educate the next generation of engineering leaders with technical and collaborative tools to develop solutions to tomorrow’s mobility challenges,” said Chris Paredis, BMW Endowed Chair in Automotive Systems Integration and Deep Orange program director. “The state-of-the-art equipment and collaborative spaces in this lab open up possibilities for innovation that we simply didn’t have before.”

The new lab makes it possible for both concurrent Deep Orange teams to be located in the same lab space, allowing them to share and learn from each other during the program. Students from Deep Orange 10 and 11 will be the first to take advantage of the lab, which will be home to the program going forward.

“For the first time in our program’s history, our students can work and learn alongside each other across different cohorts. Such sharing of knowledge and ideas will accelerate the education, engineering and innovation process that will fuel the next decade of Deep Orange,” said Paredis. “With a program as rapid and all-encompassing as ours, this type of cross-collaboration is invaluable when it comes to shaping the engineering leaders we want to develop.”

“AVX and Clemson have a longstanding, multifaceted partnership that speaks volumes about what the company thinks of our talented students and faculty, “ said Zoran Filipi, chair of the Department of Automotive Engineering. “CU-ICAR is on the cutting edge in terms of preparing our students for tomorrow’s automotive careers, and we are grateful for AVX Corporation’s generous contribution.”

This partnership was developed through Clemson’s Office of Corporate Partnerships and Strategic Initiatives. AVX Corporation is a strategic corporate partner of the University and the AVX lab is the newest addition to CU-ICAR’s innovation ecosystem and will be surrounded by 20+ global campus partners.

“Our global reputation is a direct result of successful strategic partnerships with industry leaders. Collaborations with companies such as AVX show the breadth and depth these partnerships can attain,” said Jack Ellenberg, associate vice president for the Office of Corporate Partnerships and Strategic Initiatives. “From OEMs to suppliers and beyond, our team’s success is directly tied to our ability to support our partners and support South Carolina.”

———-

Deep Orange
Deep Orange is a flagship program of Clemson’s two-year master’s program in automotive engineering. The program provides students with experience in market analysis, target customer profiles, vehicle design, prototyping, and manufacturing while balancing costs and design targets in an aggressive timeline. The innovative vehicle prototype program encourages students to push the boundaries of conventional design and engineering.

Clemson University International Center for Automotive Research (CU-ICAR)
The Clemson University International Center for Automotive Research (CU-ICAR) is a 250-acre advanced-technology research campus where university, industry and government organizations collaborate. CU-ICAR offers master’s and Ph.D. programs in automotive engineering and is conducting leading-edge applied research in critical areas, such as advanced product-development strategies, sustainable mobility, intelligent manufacturing systems and advanced materials. CU-ICAR has industrial-scale laboratories and testing equipment in world-class facilities available for commercial use.

 

Related

Recent Posts

KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

6.11.2025
8

Capacitor Lead Times: October 2025

6.11.2025
51

Coilcraft Introduces Ultra-Low Loss Shielded Power Inductors

6.11.2025
13

Würth Elektronik Expands its MagI³C-VDMM MicroModules

5.11.2025
9

Murata Expands High Cutoff Frequency Chip Common Mode Chokes

5.11.2025
9

Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

30.10.2025
42

Samsung Releases Automotive Molded 2220 1kV C0G MLCC

23.10.2025
70

VINATech Offers Smallest 100µF Al-Hybrid Capacitor

23.10.2025
50

Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

23.10.2025
14

Bourns Unveils Automotive 3 Watt Gate Driver Transformer

22.10.2025
10

Upcoming Events

Nov 11
17:00 - 18:00 CET

Industrial Applications Demand More from Interconnects in Next-Gen Designs

Nov 12
11:00 - 12:00 CET

PCB Design: Impedance is for everyone!

Nov 12
November 12 @ 12:00 - November 13 @ 14:15 EST

Microelectronic Packaging Failure Modes and Analysis

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version