Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

AVX Introduces New Lambda-Bridge Thermal Conductors

11.11.2019
Reading Time: 2 mins read
A A

Source: AVX news

Exhibiting high thermal conductivity, low thermal resistance, & capacitance so low that the devices are virtually transparent at RF/microwave frequencies, the series provides efficient, compact, & cost-effective thermal management solutions
FOUNTAIN INN, S.C. (October 17, 2018) – AVX Corporation, a leading manufacturer and supplier of advanced electronic components and interconnect, sensor, control, and antenna solutions, has released the new λ-Bridge (Lambda-Bridge) Series thermal conductors. Constructed with high-quality aluminum nitride (AlN) or beryllium oxide (BeO) materials, Lambda-Bridge thermal conductors provide efficient, cost-effective thermal management solutions with reliable, repeatable performance in four small EIA form factors: 0302, 0402, 0603, and 0805. Designed to direct heat to thermal ground planes, heat sinks, or other points of thermal interest, help protect adjacent components from hot-spot thermal loads, and improve overall circuit reliability, the series exhibits high thermal conductivity, low thermal resistance, and capacitance so low that the devices are virtually transparent at RF/microwave frequencies.

RelatedPosts

Overvoltage and Transient Protection for DC/DC Power Modules

Choosing the Right Capacitor: The Importance of Accurate Measurements

Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

The new Lambda-Bridge thermal conductors also feature RoHS-compliant SMT packages that are fully compatible with automated pick-and-place processing, and are ideal for use between active-device and adjacent ground planes, between a specific contact pad and case or between contact pads, and as direct component contacts in GaN power amplifiers, high-power RF amplifiers, filters, synthesizers, industrial computers, switch-mode power supplies, and pin and laser diodes.

“Our new Lambda-Bridge thermal conductors provide efficient, compact, and cost-effective thermal management solutions, improve overall circuit reliability, and offer an additional layer of protection for adjacent components in a wide range of RF, microwave, and power applications,” said Larry Eisenberger, principal technical marketing engineer at AVX.

Standard configurations for the new Lambda-Bridge thermal conductors currently include 0302, 0402, 0603, and 0805 EIA packages with two standard thicknesses ranging from 20–40mils (T1) and 15–25mils (T2), in edge-wrap (fully-metalized edge) and no-wrap styles, and with either gold-over non-magnetic barrier terminations or gold-over-magnetic terminations. Custom configurations are also available.

AlN Lambda-Bridge thermal conductors exhibit thermal resistance values spanning 10°C/W to 25°C/W (T1) and 16°C/W to 32°C/W (T2); thermal conductivity values spanning 40mW/°C to 100mW/°C (T1) and 30mW/°C to 60mW/°C (T2); and capacitance values spanning 0.06–0.13pF (T1) and 0.05–0.08pF for edge-wrap versions. Non-wrapped versions have even lower capacitance values.

BeO Lambda-Bridge thermal conductors exhibit thermal resistance values spanning 7°C/W to 16°C/W (T1) and 11°C/W to 21°C/W (T2); thermal conductivity values spanning 61mW/°C to 153mW/°C (T1) and 46mW/°C to 92mW/°C (T2); and capacitance values spanning 0.05–0.10pF (T1) and 0.04–0.07pF for edge-wrap versions.

Packing options include: 1,000 pieces on a 7” reel, 500 pieces on a 7” reel, and matrix tray, and lead-time for the series is currently 12 weeks.

Related

Recent Posts

Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

12.11.2025
6

Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

12.11.2025
7

Murata Expands High Rel NTC Thermistors in Compact 0603M Size

12.11.2025
7

KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

6.11.2025
14

Molex Releases Industry-First Quad-Row Board-to-Board Connectors with EMI Shields

6.11.2025
17

Capacitor Lead Times: October 2025

6.11.2025
90

Coilcraft Introduces Ultra-Low Loss Shielded Power Inductors

6.11.2025
26

Würth Elektronik Expands its MagI³C-VDMM MicroModules

5.11.2025
17

Littelfuse Releases Load-Powered Compact Relay

5.11.2025
17

Upcoming Events

Dec 2
December 2 @ 12:00 - December 4 @ 14:15 CET

Microwave Packaging Technology

Dec 9
December 9 @ 12:00 - December 11 @ 14:15 EST

Space and Military Standards for Hybrids and RF Microwave Modules

Dec 10
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version