Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Murata Releases In-vehicle Compact Crystal in 2016 Size

    Vishay Releases Industrial-Grade 3/8 Square Single-Turn Cermet Trimmer

    July 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Samsung Electro-Mechanics Focuses MLCCs on AI servers and Automotive

    Modelithics Library Expands with 120 New Models

    Understanding Inductor Dot Markings and Their Application in LTspice

    Exxelia Offers High-Q RF Microwave Capacitors for High Reliability Applications

    Premo Releases PLC Transformer for EV and Smart Grid Applications

    Wk 29 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Murata Releases In-vehicle Compact Crystal in 2016 Size

    Vishay Releases Industrial-Grade 3/8 Square Single-Turn Cermet Trimmer

    July 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Samsung Electro-Mechanics Focuses MLCCs on AI servers and Automotive

    Modelithics Library Expands with 120 New Models

    Understanding Inductor Dot Markings and Their Application in LTspice

    Exxelia Offers High-Q RF Microwave Capacitors for High Reliability Applications

    Premo Releases PLC Transformer for EV and Smart Grid Applications

    Wk 29 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

AVX Introduces New Lambda-Bridge Thermal Conductors

11.11.2019
Reading Time: 2 mins read
A A

Source: AVX news

Exhibiting high thermal conductivity, low thermal resistance, & capacitance so low that the devices are virtually transparent at RF/microwave frequencies, the series provides efficient, compact, & cost-effective thermal management solutions
FOUNTAIN INN, S.C. (October 17, 2018) – AVX Corporation, a leading manufacturer and supplier of advanced electronic components and interconnect, sensor, control, and antenna solutions, has released the new λ-Bridge (Lambda-Bridge) Series thermal conductors. Constructed with high-quality aluminum nitride (AlN) or beryllium oxide (BeO) materials, Lambda-Bridge thermal conductors provide efficient, cost-effective thermal management solutions with reliable, repeatable performance in four small EIA form factors: 0302, 0402, 0603, and 0805. Designed to direct heat to thermal ground planes, heat sinks, or other points of thermal interest, help protect adjacent components from hot-spot thermal loads, and improve overall circuit reliability, the series exhibits high thermal conductivity, low thermal resistance, and capacitance so low that the devices are virtually transparent at RF/microwave frequencies.

RelatedPosts

Murata Releases In-vehicle Compact Crystal in 2016 Size

Vishay Releases Industrial-Grade 3/8 Square Single-Turn Cermet Trimmer

July 2025 Interconnect, Passives and Electromechanical Components Market Insights

The new Lambda-Bridge thermal conductors also feature RoHS-compliant SMT packages that are fully compatible with automated pick-and-place processing, and are ideal for use between active-device and adjacent ground planes, between a specific contact pad and case or between contact pads, and as direct component contacts in GaN power amplifiers, high-power RF amplifiers, filters, synthesizers, industrial computers, switch-mode power supplies, and pin and laser diodes.

“Our new Lambda-Bridge thermal conductors provide efficient, compact, and cost-effective thermal management solutions, improve overall circuit reliability, and offer an additional layer of protection for adjacent components in a wide range of RF, microwave, and power applications,” said Larry Eisenberger, principal technical marketing engineer at AVX.

Standard configurations for the new Lambda-Bridge thermal conductors currently include 0302, 0402, 0603, and 0805 EIA packages with two standard thicknesses ranging from 20–40mils (T1) and 15–25mils (T2), in edge-wrap (fully-metalized edge) and no-wrap styles, and with either gold-over non-magnetic barrier terminations or gold-over-magnetic terminations. Custom configurations are also available.

AlN Lambda-Bridge thermal conductors exhibit thermal resistance values spanning 10°C/W to 25°C/W (T1) and 16°C/W to 32°C/W (T2); thermal conductivity values spanning 40mW/°C to 100mW/°C (T1) and 30mW/°C to 60mW/°C (T2); and capacitance values spanning 0.06–0.13pF (T1) and 0.05–0.08pF for edge-wrap versions. Non-wrapped versions have even lower capacitance values.

BeO Lambda-Bridge thermal conductors exhibit thermal resistance values spanning 7°C/W to 16°C/W (T1) and 11°C/W to 21°C/W (T2); thermal conductivity values spanning 61mW/°C to 153mW/°C (T1) and 46mW/°C to 92mW/°C (T2); and capacitance values spanning 0.05–0.10pF (T1) and 0.04–0.07pF for edge-wrap versions.

Packing options include: 1,000 pieces on a 7” reel, 500 pieces on a 7” reel, and matrix tray, and lead-time for the series is currently 12 weeks.

Related

Recent Posts

Murata Releases In-vehicle Compact Crystal in 2016 Size

23.7.2025
5

Vishay Releases Industrial-Grade 3/8 Square Single-Turn Cermet Trimmer

23.7.2025
1

July 2025 Interconnect, Passives and Electromechanical Components Market Insights

23.7.2025
5

Exxelia Offers High-Q RF Microwave Capacitors for High Reliability Applications

21.7.2025
21

Premo Releases PLC Transformer for EV and Smart Grid Applications

21.7.2025
7

Rubycon Extends Capacitance of Polymer Hybrid Aluminum Capacitors

16.7.2025
64

Knowles Releases Inductors for Mission-Critical RF Applications

15.7.2025
27

Bourns Increases Maximum Inductance Values of Semi-Shielded Power Inductors

11.7.2025
12

YAGEO Unveils Next Gen BMS Isolation Transformers

10.7.2025
25

Littelfuse Compact Tactile Switch Offers Low-Noise Switching and Dust Protection

10.7.2025
13

Upcoming Events

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version