Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

    Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

    Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

    Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

    Samtec Releases 800-Position High-Performance Array Connectors  

    DigiKey Announces Back to School Giveaway to Empower Tomorrow’s Innovators

    Ripple Steering in Coupled Inductors: SEPIC Case

    TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

    Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

    Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

    Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

    Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

    Samtec Releases 800-Position High-Performance Array Connectors  

    DigiKey Announces Back to School Giveaway to Empower Tomorrow’s Innovators

    Ripple Steering in Coupled Inductors: SEPIC Case

    TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

    Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Bourns Announces Three-pin Current Sense Resistors to Reduce Sensing Errors

7.10.2022
Reading Time: 3 mins read
A A

Bourns is pleased to announce the extension of the model CSM2F series AEC-Q200 compliant current sense resistor families with additional sensing pins which connect to the customer’s PCB by through-hole soldering. The three-pin current sense resistors designs aims to reduce the sensing error.

Current sense resistors are growing in popularity due to their high measurement accuracy and relatively low cost compared to other technologies. This new product series complements Bourns’ other circuit conditioning components, such as power inductors and rectifier diodes.

RelatedPosts

Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

Bourns Releases High Power High Ripple Chokes

Bourns Unveils High Reliability Compact Micro Encoders

These new models come with either two or three tin-plated copper pins. Two pins are riveted to the voltage test points of the shunt resistor in order to measure the voltage drop on the resistive element, which is proportional to the current flow through the resistor.

The optional third pin connects to the ground side of the circuit. For two-pin designs, the current used by the sensor device flows through the ground side pin and causes a voltage drop between the PCB connection and the resistor, which can result in a sensing error. Three-pin designs reduce the sensing error by carrying the ground current on a separate path from the sensing circuit.

Principle of two and three termination pin current sense shunt resistors; source: Bourns

Bourns® CSM2F Series Current Sense Resistors are manufactured using electron beam welded resistive and copper alloys. This product family is available with three different surface finishes.

  • The “Pre-Plated” copper terminal version is tin-plated before the electron beam welding process. The top and bottom surface of the copper terminals are plated while the side terminals and the resistive element remain non-plated due to the stamping process.
  • The “Fully-Plated” version goes through the tin-plating process after material stamping to ensure the resistive element and all side terminals are covered by tin. This process enhances the performance of the Model CSM2F Series with better long-term stability and lower resistance drift.
  • The “Bare-Copper” version is without tin-plating and provides better TCR (Temperature Coefficient of Resistance) performance.

The Bourns® Model CSM2F Series is available in four different footprint sizes: 6918, 8518, 7036, and the new 8536 metric. The series features resistance values ranging from as low as 25 µΩ up to 200 µΩ, with permanent power ratings of up to 50 watts, continuous current up to 1414 amps and the ability to handle high pulse power ratings. The metal alloy current sensing element enables thermal EMF as low as 0.25 µV/K and low TCRs of ±50 PPM/°C in the 20 °C to 60 °C temperature range.

Features

  • EB welded metal strip
  • Passivated bare copper, plated top and bottom surface or fully-plated terminals
  • Two sensing pins for voltage sensing
  • Optional third sensing pin for ground connection
  • Up to 50 W permanent power
  • Excellent long-term stability
  • Low resistance, low TCR
  • Low thermal EMF
  • Maximum fastening torque: 10 Nm
  • Bulk or tray packaging
  • RoHS compliant*
  • Automotive AEC-Q200 compliant

Applications

  • Battery Management Systems (BMS)
  • Current sensing for hybrid and electric vehicles
  • Current sensing in bus bars
  • Current sensing in welding equipment
  • Voltage division
  • Power modules
  • Frequency converters
  • Industrial

Related

Source: Bourns

Recent Posts

Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

29.8.2025
3

Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

28.8.2025
9

Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

28.8.2025
11

TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

27.8.2025
10

Vishay Releases High Current 3.3 V to 36 V ESD Protection Diodes

25.8.2025
15

TDK Extends SMT Gate Drive Transformers to 1000 V

20.8.2025
21

Stackpole Unveils Metal Element High Current Chip Jumpers

19.8.2025
41

Vishay Releases Miniature SMD Trimmers for Harsh Environments

14.8.2025
18

Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

13.8.2025
14

Stackpole Extends Voltage of High Temp Chip Resistors

13.8.2025
15

Upcoming Events

Sep 3
15:30 - 17:30 CEST

How to Choose Your Magnetic Supplier

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version