Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

    Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

    Samtec Releases 800-Position High-Performance Array Connectors  

    DigiKey Announces Back to School Giveaway to Empower Tomorrow’s Innovators

    Ripple Steering in Coupled Inductors: SEPIC Case

    TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

    Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

    Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

    Samtec Releases 800-Position High-Performance Array Connectors  

    DigiKey Announces Back to School Giveaway to Empower Tomorrow’s Innovators

    Ripple Steering in Coupled Inductors: SEPIC Case

    TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

    Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Bourns Introduces GMOV™ Varistor Overvoltage Protection for Improved Reliability and Safety

6.5.2019
Reading Time: 2 mins read
A A

Source: Bourns news

RIVERSIDE, Calif., April 29, 2019 – Bourns, Inc., a leading manufacturer and supplier of electronic components, today introduced the company’s GMOV™ line of overvoltage protection components. Bourns’ innovative hybrid design combines its patented, space-saving Gas Discharge Tube (GDT) with FLAT® technology with a Metal Oxide Varistor (MOV) to create a compact and enhanced overvoltage protector that is a drop-in replacement for standard 14 and 20 mm MOVs.

RelatedPosts

Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

Samtec Releases 800-Position High-Performance Array Connectors  

Bourns designed its new GMOV™ family to be an enhanced protection solution that helps overcome degradation and catastrophic failure issues that can occur in discrete MOVs that are subjected to transient surges or temporary overvoltage exceeding their maximum rated values. The GDT is used to isolate the MOV from the line voltage so it remains “on call but not on duty” thereby shielding it from transients and temporary overvoltage spikes that typically damage the MOV over time. Another significant benefit of combining the two technologies is that the GMOV™ device offers ultra-low leakage (<0.1 µA) helping to reduce damage due to watt loss heating. The result is a higher reliability protection solution with virtually zero standby energy consumption.

Overvoltage protection remains a consistent requirement to guard against unstable electrical service swells, switching and lightning voltage transients. MOVs are popular overvoltage protection devices, but they are susceptible to degradation and failure issues in certain harsh and uncontrolled environment applications. Failure can occur from a thermal runaway condition, which defines a MOV’s lifespan. Thermal runaway conditions can also increase the risk of fire in an MOV to be fire hazards prompting designs to typically require additional fusing or thermal cutoff devices for safety.

Bourns® GMOV™ components cost-effectively improve application reliability by providing a predictable failure mode. This removes the need for indication circuitry and more expensive thermally protected MOV devices. Another advantage is that GMOV™ protectors help to eliminate the need for more costly and higher performance MOVs to meet UL1449 lost neutral tests. And importantly, GMOV™ devices offer a higher level of safety, consistently blowing fuses and breakers compared to MOVs alone, for extended voltage threats.

Available now, Bourns® GMOV™ components are offered in 14 and 20 mm versions with maximum continuous operating voltage ratings from 45 Vrms to 320 Vrms. The 14 mm version has a maximum surge current rating of 6 kA, while the 20 mm version has a 10 kA maximum surge current rating. The Bourns® GMOV™ family is UL 1449 Type 5 recognized and RoHS compliant*.

For more detailed information about the benefits Bourns® GMOV™ devices can provide, please see the white paper here.

Related

Recent Posts

Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

28.8.2025
3

TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

27.8.2025
7

Vishay Releases High Current 3.3 V to 36 V ESD Protection Diodes

25.8.2025
13

TDK Extends SMT Gate Drive Transformers to 1000 V

20.8.2025
21

Stackpole Unveils Metal Element High Current Chip Jumpers

19.8.2025
40

Vishay Releases Miniature SMD Trimmers for Harsh Environments

14.8.2025
18

Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

13.8.2025
13

Stackpole Extends Voltage of High Temp Chip Resistors

13.8.2025
14

High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

12.8.2025
162

Bourns Releases High Power High Ripple Chokes

8.8.2025
40

Upcoming Events

Sep 3
15:30 - 17:30 CEST

How to Choose Your Magnetic Supplier

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version