Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    E-Textile SMD-Ribbon Joints Protections Against Sweat

    Reliability of Tantalum Capacitors: the Role of Internal Stress

    Bourns Releases Semi-Shielded Power Inductor with Polarity Control

    Quality Challenges and Risk Mitigation for Passive Components in Harsh Environments

    Silicon Capacitors Reliable Performance in Harsh Conditions

    Tantalum Capacitor Technology Advantages for Harsh Environment

    Thermoset Polymer Dielectric Capacitors for Harsh Environment Applications 

    EMI Noise Mitigation in Automotive 48V Power Supply Systems

    Bourns Introduced 15A Compact Common Mode Choke

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    E-Textile SMD-Ribbon Joints Protections Against Sweat

    Reliability of Tantalum Capacitors: the Role of Internal Stress

    Bourns Releases Semi-Shielded Power Inductor with Polarity Control

    Quality Challenges and Risk Mitigation for Passive Components in Harsh Environments

    Silicon Capacitors Reliable Performance in Harsh Conditions

    Tantalum Capacitor Technology Advantages for Harsh Environment

    Thermoset Polymer Dielectric Capacitors for Harsh Environment Applications 

    EMI Noise Mitigation in Automotive 48V Power Supply Systems

    Bourns Introduced 15A Compact Common Mode Choke

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Causes of Oscillations in Flyback Converters

15.5.2025
Reading Time: 3 mins read
A A

This article identifies some common causes of oscillations in flyback converters and presents video from Sam Ben Yaakov that provides detailed insight into the potential causes.

Flyback converters can experience oscillations due to several design and component-related factors. These issues often manifest as audible noise, flickering, or instability in output voltage/current. Below are the primary causes and their underlying mechanisms:

RelatedPosts

Ripple Steering in Coupled Inductors: SEPIC Case

Coupled Inductors in SEPIC versus Flyback Converters

Non-Linear MLCC Class II Capacitor Measurements Challenges

Feedback Loop Instability

  • Slow feedback response can lead to pulse bunching, where the controller lags in adjusting the duty cycle, causing irregular switching and oscillations.
  • Inadequate compensation networks or using low-gain optocouplers (e.g., non-D-type) may destabilize the loop. Switching to high-gain optocouplers or adding feedback-loop accelerators can improve stability.

Transformer Design Flaws

  • Leakage inductance from improper core air gaps or winding arrangements (e.g., non-interleaved windings) generates voltage spikes and parasitic ringing.
  • Air gap optimization is critical: one study found a 0.7 mm gap minimized spikes, while larger gaps increased leakage.

Component-Related Noise

  • Ceramic capacitors under high dV/dt stress exhibit the reverse piezoelectric effect, vibrating and generating audible noise. Replacing them with metal-film capacitors or adjusting dielectric materials can mitigate this.
  • Ferrite core magnetostriction in transformers can also produce audible buzzing, especially at lower switching frequencies.

Parasitic Resonances

  • Stray capacitance and inductance in transformer windings or PCB layouts create resonant loops, causing jitter and duty-cycle variations. Damping these resonances or minimizing parasitic elements reduces oscillations.

Control Circuit Issues

  • Poorly implemented CV/CC control (e.g., diode-OR configurations) may fail to regulate smoothly at low loads, leading to flickering and instability.
  • Insufficient snubber/clamp circuits allow voltage spikes to propagate, exacerbating oscillations. Adjusting snubber resistor/capacitor values or using Zener clamps can help.

Design and Load Conditions

  • Low standby power modes often force converters into discontinuous conduction mode (DCM), lowering switching frequencies and increasing audible noise susceptibility.
  • Load-dependent instability (e.g., flickering at 1–5% load) may require revisiting transformer inductance or feedback compensation for wider operating ranges.

To troubleshoot, prioritize checking feedback loop stability, transformer leakage inductance, and component substitutions (e.g., capacitors). Experimental adjustments to air gaps, snubber networks, and control circuitry are often necessary to isolate and resolve oscillations.

further read reference:

Flyback Converter Design and Calculation

Related

Source: Sam Ben-Yaakov

Recent Posts

E-Textile SMD-Ribbon Joints Protections Against Sweat

25.9.2025
1

Reliability of Tantalum Capacitors: the Role of Internal Stress

25.9.2025
6

Quality Challenges and Risk Mitigation for Passive Components in Harsh Environments

24.9.2025
12

Silicon Capacitors Reliable Performance in Harsh Conditions

24.9.2025
16

Tantalum Capacitor Technology Advantages for Harsh Environment

24.9.2025
15

Thermoset Polymer Dielectric Capacitors for Harsh Environment Applications 

24.9.2025
5

EMI Noise Mitigation in Automotive 48V Power Supply Systems

24.9.2025
14

KYOCERA AVX Capacitors in AI Systems

23.9.2025
13

High-Frequency Ceramic Capacitor Performance of Novel Embedded Electrode Design

23.9.2025
24

Different Causes of Capacitor Degradation and Failure Mechanisms

23.9.2025
19

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 8
11:00 - 12:00 CEST

PCB Online Shop – simply “Made in Germany” by Würth Elektronik

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version