Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

    Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

    Bourns Releases New Current Transformer

    Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

    VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

    binder Offers Wide Range of M12 Panel Mount Connectors

    Bourns Releases New Shielded Power Inductors for DDR5

    Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

    Wk 21 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

    Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

    Bourns Releases New Current Transformer

    Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

    VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

    binder Offers Wide Range of M12 Panel Mount Connectors

    Bourns Releases New Shielded Power Inductors for DDR5

    Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

    Wk 21 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Coupled inductors from TT Electronics are perfect for automotive DC/DC converter applications

5.7.2017
Reading Time: 2 mins read
A A

source: TT Electronics

Woking, UK, 29 June 2017 – TT Electronics, a global provider of engineered electronics for performance critical applications, today launched the HA78D series of coupled inductors for use in DC/DC converter applications.  With their high temperature rating and AECQ200 certification, they are ‘automotive ready’ for the latest generation of motor vehicles.

RelatedPosts

Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

Bourns Releases New Current Transformer

The HA78D series shielded SMD inductors have been designed specially for use in DC/DC converter configurations including flyback, multi-output buck, SEPIC* and Zeta applications. With their high leakage inductance they are ideal for SEPIC applications where the loosely coupled winding improves the SEPIC efficiency by reducing circulating current and provides twice the ripple current reduction compared to separate inductors.

In a motor vehicle there are more than 80 electronic applications. Each of these uses an ECU, and each ECU requires a DC/DC converter. In 2015, 40% of the total cost of a car was attributable to its electronics. It can be seen that the design of the DC/DC converter for automotive applications is a challenging task when one considers all the requirements that need to be met. Accordingly, inductors are vital components for achieving the necessary performance and power requirements of automotive DC/DC converters.

TT Electronics’ HA78D series comprises of four inductors; the HA78D-L128100MLFTR, HA78D-L128220MLFTR, HA78D-L128330MLFTR and HA78D-L128470MLFTR. When parallel connected, their inductance ratings at 100kHz are 10, 22, 33 and 47 micro Henries consecutively.

The inductors offer high efficiency and excellent current handling in a rugged housing, and with their low losses ferrite cores they are ideal for high frequency DC/DC converter and VRM/VRD applications.  Particularly, their wide -50 to 155°C operating temperature range and AECQ200 certification make them ideal for high stress environments.

Exhibiting versatility, the RoHS compliant inductors can also be used as two single inductors connected in series or parallel or as a common mode choke as a filter inductor for EMI noise reduction.

In the automotive market, the inductors are suitable for applications including lighting, hybrid car, start and stop vehicle, and electrical power steering.  Other applications include industrial, telecom, VRM and PoL.

The HA78D series embraces TT Electronics’ holistic approach to inductor design to create products that are feature rich, safe, highly efficient and reliable.  The result is designs and manufacturing solutions for magnetic devices that have a systematic adherence to safety standards and quality as is required by the automotive industry.  The designs allow for smaller and lighter components with more reliable circuits that enhance safety and lower the risk of liability for customers.

TT Electronics is shown to have high quality, reliable products based on empirical saturation current data, core loss test data, and company wins with major automotive and industrial suppliers.

Related

Recent Posts

Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

30.5.2025
8

Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

29.5.2025
8

Bourns Releases New Current Transformer

29.5.2025
11

Bourns Releases New Shielded Power Inductors for DDR5

29.5.2025
22

Samsung Electro-Mechanics Releases 165C Automotive 0806 Size Power Inductors

21.5.2025
30

Coupled Inductors Circuit Model and Examples of its Applications

21.5.2025
74

Capacitor Ripple Current Testing: A Design Consideration

21.5.2025
67

TDK Releases 0201 High-Frequency Smallest Inductors

20.5.2025
34

Coilcraft Extends Air Core RF Inductors

20.5.2025
18

Bourns Releases Automotive 1W Flyback Transformer

19.5.2025
25

Upcoming Events

Jun 4
11:00 - 12:00 CEST

Würth Elektronik PCB Production in Asia

View Calendar

Popular Posts

  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • Capacitor Symbols

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Linear Variable Differential Transformers LVDTs Explained

    0 shares
    Share 0 Tweet 0
  • Guide to Snubber Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version