• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

DC Blocking Capacitor Selection for Mobile Stereo High-Fidelity Audio

3.2.2023

Practical LLC Transformer Design Methodology

31.3.2023

Practical Measurement of Crystal Circuits

31.3.2023

March 2023 ECIA NA Electronic Components Sales Misses Expectations

31.3.2023

4th PCNS Call for Abstracts Extended !

30.3.2023

Würth Elektronik Presents New Series of DC-Link Film Capacitors

30.3.2023

Vishay Increases Anti-Surge Thick Film 0805 Power Resistor Performance with 0.5 W Power Rating

29.3.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Practical LLC Transformer Design Methodology

    Practical Measurement of Crystal Circuits

    March 2023 ECIA NA Electronic Components Sales Misses Expectations

    4th PCNS Call for Abstracts Extended !

    Würth Elektronik Presents New Series of DC-Link Film Capacitors

    Vishay Increases Anti-Surge Thick Film 0805 Power Resistor Performance with 0.5 W Power Rating

    Q&A Update on Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition

    Designing with High Voltage Resistors: 10 Top Tips for Success

    API Delevan Introduces 0402 and 0603 Small High Reliability Space SMD Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Practical LLC Transformer Design Methodology

    Practical Measurement of Crystal Circuits

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Practical LLC Transformer Design Methodology

    Practical Measurement of Crystal Circuits

    March 2023 ECIA NA Electronic Components Sales Misses Expectations

    4th PCNS Call for Abstracts Extended !

    Würth Elektronik Presents New Series of DC-Link Film Capacitors

    Vishay Increases Anti-Surge Thick Film 0805 Power Resistor Performance with 0.5 W Power Rating

    Q&A Update on Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition

    Designing with High Voltage Resistors: 10 Top Tips for Success

    API Delevan Introduces 0402 and 0603 Small High Reliability Space SMD Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Practical LLC Transformer Design Methodology

    Practical Measurement of Crystal Circuits

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

DC Blocking Capacitor Selection for Mobile Stereo High-Fidelity Audio

3.2.2023
Reading Time: 6 mins read
0 0
0
SHARES
76
VIEWS

The blog article written by Rick Liu, KYOCERA-AVX Corporation elaborates on DC blocking capacitor selection for mobile and wearable stereo high-fidelity audio.

Application Background

The representation of audio signals in analog and digital electronics can take many forms. Still, they must ultimately be converted back to their mechanical origins as the motion of air molecules propagating as waves. These waves are generated by moving a mass, often the cone of a speaker, back and forth around a neutral position. As such, any fixed offset in the audio signal, represented by a DC bias, is simply a waste of energy and possibly a source of imbalance in the resulting sound wave.

RelatedPosts

KYOCERA AVX Antenna Simulation Models are now Available in Ansys Simulation Software

The Benefits of Using Tantalum Capacitors in Electric Vehicle Applications

DC Bias Characteristics of Ceramic Capacitors

Series blocking capacitors are generally used for each audio channel to eliminate the potential of any DC component. While most capacitors will adequately remove the DC component from the output, each of the many varieties will also alter the actual audio signal to varying degrees. For high-fidelity applications, proper selection of these blocking capacitors can be a critical performance factor.

DC Blocking Capacitor Selection

For mobile and wearable applications, volumetric and height restrictions limit the available choices for capacitors with high capacitance-voltage (CV) characteristics. Multilayer ceramics (MLCC) cannot be used because of piezo noise and capacitance reduction at high voltage.

The only feasible devices to fit within an 0805 package and provide 100uF of capacitance at a minimum are of the Tantalum capacitors MnO2 and Tantalum polymer varieties. Two candidate capacitors from KYOCERA AVX were selected and are compared in the following tables.

The Tantalum MnO2 (F98 series – Fig.2.) offers high CV, while the Tantalum polymer (F38 series – Fig.1.) offers comparable CV along with extremely low series resistance (ESR).

Figure 1. F38 0805 100uF 4V tantalum polymer low ESR capacitor characteristics
Figure 2. F98 0805 220uF 4V tantalum high CV capacitor characteristics

Frequency Response

The frequency response of the F380G107MSALZT and F980G227MSA for left and right channels were tested, as shown in Figure 3. Two characteristics are worth noting in this data: the F38 exhibits greater attenuation than the F98 below 100Hz, and the difference between the left and right channel is worse for the F38 even beyond 1kHz.

Given the superior frequency performance of the F98 series capacitors, the effect of ESR on the left and right channels can then be analyzed. The worst- and best-case combinations are shown in Figure 4, with the worst (4.5 dB drop) ESR of 4.83Ω and 0.25Ω shown in green and red, and the best (2.5 dB drop) ESR of 1.87Ω and 0.35Ω shown in blue and black. From 50 Hz to approximately 4 kHz, the difference between right and left channels was maintained within 3 dB.

Figure 3. – Frequency response curved for the polymer F380G107MSALZT tantalum capacitors
Figure 4. – Frequency response curved for the high CV F980G227MSA tantalum capacitors

F98 High CV Tantalum Capacitor for Maximized Capacitance in 0805 Case

Dynamic Range and ESR

Measuring twenty F98 capacitors yielded a range of results for capacitance and ESR in the range of interest, as shown in Figure 5. Several different combinations of ESR values were chosen and tested for the left and right audio channels. Figure 6 shows the black trace with ESR of 1.87Ω and 1.75Ω produced the optimal results for minimizing channel difference.

Figure 5. F98 220uF 4V 0805 tantalum capacitor capacitance and ESR measurement
Figure 6. – Dynamic range tests for left and right channels with varying ESR combinations for the high CV F980G227MSA tantalum capacitors

Stepped Frequency Sweep

Four groups of F980G227MSA were selected with different ranges of values for ESR. Stepped frequency response tests were conducted for each group, as shown in the following figures. The first and second groups have similar ESR values. The third and fourth groups have larger differences in ESR values.

The closer ESR values result in closer RMS values between the left and right channels. Conversely, a greater ESR difference resulted in an RMS difference between the left and right
channels of around 1 dB at low frequencies.

Figure 7. – F98 220uF 4V 0805 tantalum capacitor Stepped frequency sweep testing sample #1
Figure 9. – F98 220uF 4V 0805 tantalum capacitor Stepped frequency sweep testing sample #3
Figure 8. – F98 220uF 4V 0805 tantalum capacitor Stepped frequency sweep testing sample #2
Figure 10. – F98 220uF 4V 0805 tantalum capacitor Stepped frequency sweep testing sample #4

F98 and F38 Tantalum Capacitor Options

Analyzing the effects of ESR and capacitance for DC blocking capacitors in audio signal paths demonstrates how critical they can be for high-fidelity applications. Unfortunately, optimal capacitor selection may not be possible when constrained by height, size, and cost. Therefore, it is recommended that the designer first maximize capacitance by using a high CV tantalum capacitors such as F98 series.

Depending to the need of application, lower ESR option is available by tantalum polymer capacitor such as KYOCERA AVX’s F38 series. After this selection is made, designers can optimize the specific device for ESR to maximize audio performance across the dynamic range and frequency response.

Source: KYOCERA AVX

Related Posts

Market & Supply Chain

March 2023 ECIA NA Electronic Components Sales Misses Expectations

31.3.2023
2
PCNS

4th PCNS Call for Abstracts Extended !

30.3.2023
107
Capacitors

Würth Elektronik Presents New Series of DC-Link Film Capacitors

30.3.2023
11

Upcoming Events

Apr 3
April 3 @ 12:00 - April 4 @ 14:00 CEST

Microelectronic Packaging Failure Modes and Analysis

Apr 5
11:00 - 12:00 CEST

Plugging – Filling – Tenting; WE PCB Webinar

Apr 6
April 6 @ 12:00 - April 7 @ 14:00 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Capacitor Losses (ESR, IMP, DF, Q), Series or Parallel Eq. Circuit ?

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.