Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Releases Automotive 1W Flyback Transformer

    Wk 20 Electronics Supply Chain Digest

    Inductor Resonances and its Impact to EMI

    Developing Low Inductance Film Capacitor using Bode 100 Analyzer

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Würth Elektronik Releases High Performance TLVR Coupled Inductors

    YAGEO Extends Rectangular Aluminum Electrolytic Capacitor Family

    Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

    Littelfuse Releases Industry-First SMD Fuse with 1500A Interrupting Rating at 277V

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Releases Automotive 1W Flyback Transformer

    Wk 20 Electronics Supply Chain Digest

    Inductor Resonances and its Impact to EMI

    Developing Low Inductance Film Capacitor using Bode 100 Analyzer

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Würth Elektronik Releases High Performance TLVR Coupled Inductors

    YAGEO Extends Rectangular Aluminum Electrolytic Capacitor Family

    Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

    Littelfuse Releases Industry-First SMD Fuse with 1500A Interrupting Rating at 277V

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

DC/DC Converters

28.2.2018
Reading Time: 5 mins read
A A

A1 DC/DC Converters

A1.1 Capacitors

Today, one can hardly find a consumer, industrial or high reliability electronic device that does not make use of a voltage regulator. Designers basically use two types of regulators, linear LDO (low dropout) and step-down switch-mode DC/DC regulators to convert voltage to lower level. Switching DC/DC regulators are preferred for applications that require a greater difference between input and output voltages because they are more efficient in such operating conditions.

A1.1.1 Switching DC/DC Power Regulators

Switched-mode power supplies (SMPS) are commonly found in many electronic systems. Important SMPS requirements are a stable output voltage with load current, good temperature stability, low ripple voltage and high overall efficiency. One key component in switching power systems is the output capacitor – used to store the charge and for smoothing and therefore its careful selection plays a vital role in determining the overall parameters of the power supply.

RelatedPosts

Bourns Releases Automotive 1W Flyback Transformer

Wk 20 Electronics Supply Chain Digest

Inductor Resonances and its Impact to EMI

There are typical SMPS topologies shown in Figure 1.

SMPS are used for VIN-to-VOUT transformation:

  • VOUT > VIN, realized by step-up, flyback or SEPIC converters,
  • VOUT < VIN, realized by step-down, flyback or SEPIC converters,
  • VOUT = VIN, realized by flyback or SEPIC converters,
  • VOUT = -VIN, realized by an inverting converter.

An SMPS circuit consists of these specific parts:

  • one or more switching transistors, mainly enhancement-mode MOS-FETs,
  • input and output smoothing capacitors,
  • low-loss passive device(s) accumulating electromagnetic energy (inductors, capacitors, transformers),
  • non-linear rectifying devices (plain P-N or Schottky diodes),
  • control sub-circuit for switching transistor management, feedback stability, and shut-down functionality.

step downsynchronous step down

step upsynchronous step up

synchronous step downSEPIC

flybackinverter

Figure 1 : Typical SMPS topologies:

a) Step-down (buck) converter; b) Synchronous step-down (buck) converter

c) Step-up (boost) converter;d) Synchronous step-up (boost) converter

e) Synchronous step-down-up (buck-boost) converter; f) Single ended primary inductor converter (SEPIC)

g)Flyback isolated-output converter; h) Inverting converter (inverter)

Capacitor Requirements

Input Capacitors

The main purpose of the input capacitors is RF noise suppression and energy reserve. Various capacitor technologies can be used per the application conditions mainly:

  • DC source coupling
  • DC source impedance
  • DC source loading
  • switching frequency

The most of application may be occupied today by MLCC capacitors, some attention has to be paid by selection of the right capacitance value due to the drop of capacitance with DC voltage and small AC ripple. Aluminium capacitors could be used for larger consumer and industrial applications, where larger physical size may not be of concern. An attention has to be paid to the maximum allowed ripple current per the ESR / type of the aluminium capacitors, ussually lower ESR type may be more suitable. Tantalum solid capacitors with MnO2 may not be generally recommended for the input side due to the spike surge current and risk of thermal runaway. Polymer tantalum capacitors may be more suitable to use.

Output Capacitors

The main purpose of the output capacitors is to provide RF noise filtration, voltage and current ripple suppression and function as a local energy reserve for the load. Important application conditions to review for the capacitor selection guide are:

  • local character and sink value
  • storage inductor value
  • converter switching frequency
  • ESR and ripple demands (achievable by single or more caps in parallel)

The general requirements for output capacitors are then:

  • Low ESR
  • High Capacitance
  • Low ESL
  • Capacitance and ESR temperature, voltage and frequency stability

The recommendation for output capacitors would be similar to that for input capacitor with a one difference – the actual surge current load is usually very well stabilised through the feedback loop of the converter, thus the surge current is limited. It is thus safe to use capacitor technologies that are more sensitive to surge load such as tantalum capacitors with MnO2.

A1.1.2. LDO Low Drop-Out Regulators

There are two functions of a capacitor connected to an output of LDO:

  • Local electrical energy reserve
  • RF noise coupling to ground
  • Feedback stability factor for LDO

Simplified structure of LDO with external input/output capacitor and feedback resistors is shown in Figure 2.

LDO

Figure 2 : Simplified LDO and typical external components

It is commonly known that output capacitor influence the gain & phase margin of the LDO loop and thus stability of the LDO see Fig.3. The output capacitance and ESR value with a connected load and its parameters are of the critical importance for the LDO operation.

LDO feedback

Fig.3. LDO phase and gain stability window that has to be maintained by ESR of the output capacitor

The capacitor’s ESR was the main limitation especially in the case of older LDO circuits where too low ESR of MLCC capacitors could not be used with LDO. The new LDO generation has improved dramatically stability of the loops and it can be said that even MLCC capacitors can be used with LDO now. Nevertheless it is of importance to check the LDO datasheet for the defined capacitor’s ESR working range. It has to be also noted that the ESR stable operation range has to maintained under all environment conditions – it means to count with its stability with temperature, moisture etc.

LDO stability

Fig.4. ESR stability window comparison between the older and newer LDO generation.

Traditionally LDOs have been using tantalum output capacitors that provided ideal ESR window and stability. The latest generation of LDOs are mostly allowing use of MLCC capacitors as well, but it is of critical importance to check the LDO specification and ESR characteristics of the selected output capacitor.

more details can be found in technical article [1]


[1] Šponar.R., Faltus.R., Jáně.M.,Flegr.Z. Zednicek.T., “DC/DC Converter Output Capacitor Benchmark”, CARTS Europe 2008


rev.1: source: T.Zednicek EPCI

Related

Recent Posts

Inductor Resonances and its Impact to EMI

16.5.2025
19

Causes of Oscillations in Flyback Converters

15.5.2025
18

How to design a 60W Flyback Transformer

12.5.2025
31

Modeling and Simulation of Leakage Inductance

9.5.2025
28

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
64

Shielding Cabinets

29.4.2025
28

Magnetic Shielding and Magnetic Shielding Sheets

29.4.2025
36

Corrosion its Development and Prevention

26.4.2025
26

Housing EMC Requirements, Issues and Solutions

26.4.2025
49

Hybrid Electrochemical Electrolytic Capacitor Provides High Frequency and High Capacitance Performance

25.4.2025
67

Upcoming Events

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • NVIDIA GB300 Boost Hybrid Supercapacitor Demand

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version