Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Releases Automotive High Creepage and Clearance Transformer

    Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

    Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

    Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

    Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

    Samtec Releases 800-Position High-Performance Array Connectors  

    DigiKey Announces Back to School Giveaway to Empower Tomorrow’s Innovators

    Ripple Steering in Coupled Inductors: SEPIC Case

    TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Releases Automotive High Creepage and Clearance Transformer

    Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

    Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

    Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

    Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

    Samtec Releases 800-Position High-Performance Array Connectors  

    DigiKey Announces Back to School Giveaway to Empower Tomorrow’s Innovators

    Ripple Steering in Coupled Inductors: SEPIC Case

    TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Does NiPdAu Terminations Need Degolding Prior Sn/Pb Soldering ?

10.1.2020
Reading Time: 3 mins read
A A

The use of gold (Au) finish on military and space qualified parts provides useful protection to the base material of leads during storage of the parts. The use of a gold layer over the barrier metal on the lead avoids the appearance of corrosion. On the other hand, as gold is not essentially soluble in Sn nor Pb, embrittlement on the lead can be produced when soldering using SnPb solder.

If the gold layer does not completely dissolve into the solder, then slow intermetallic reactions can proceed in the solid state. The gold reacts with the soldering, forming brittle intermetallics and preferential cleavage planes.

RelatedPosts

Bourns Releases Automotive High Creepage and Clearance Transformer

Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

For this reason, Military/Aerospace and some levels of industrial standards specify the removal of gold plating from components before they are soldered to the PCB to try and inhibit the formation of this gold inter-metallic and the higher percentage risk of fractures forming in the solder joint during end use, especially where the PCB’s are destined for harsh environments. To eliminate the risk, the safest option is to remove the gold before assembly, this process is called “degolding” and it is addressed by the standard J-STD-001 “Requirements for Soldered Electrical and Electronic Assemblies” in the paragraph “Gold removal”

During year 2001, all the NiPd finished packages from manufacturer Texas Instruments were substituted by NiPdAu finished ones (both known as Pre-Plated finishes, PPF, in which the solderable finish is applied at the leadframe maker, not in a post mold finishing operation, PMF), which would provide a barrier to degradation of the finish. This finish consists on three layers over the copper base metal: a first one of Nickel (0.5 µm min), a second one of Palladium (0.02 µm min) and a last one of Gold (30 Å to 150 Å).

As per the bibliography available, recommended Au content on the joint should be less than 3% weight. Taking into account the very low width of the Au layer on the finish of the lead, Texas Instruments Application Report SZZA031 “A Nickel-Palladium-Gold Integrated Circuit Lead Finish and Its Potential for Solder-Joint Embrittlement” (December 2001) demonstrates, based on theory and experimentation, that main contribution of Au to the solder joint comes from the Printed Wiring Board (PWB) finish. On this testing, different thickness NiAu finish are considered for the PWB. Some more details about the evaluation of NiPdAu terminations are available in Texas Instrument evaluation paper (July 2001) here.

After metallographic analysis of the joint, it was shown that:

  • As the gold from the component lead is minimum, it is dissolved on the solder.
  • While the Sn melts during reflow, the sacrificial Au/Pd layer of the Surface is dissolved. The solder joint is made to the Ni surface of the component lead.
  • There is no Cu migration through the Ni barrier layer of the lead.
  • In a system with no Au on the PWB and with a standard Au thickness on the lead, there is not Au detectable in the bulk of the solder joint.
  • The Au from the PWB can migrate across the solder joint and appear at the lead/solder interface in the case of the NiPd-finished lead (no gold, previous finish used by Texas Instruments).
  • At very high Au thicknesses on PWB and leads but give Au concentrations of less than 3 weight %, acicular SnAu intermetallics do form. These do not appear to be enough toaffect pull strength.
  • The risk of Au embrittlement caused by NiPdAu component lead finish is essentially negligible.
  • 3% weight Au on the solder is only achieved for artificially high thickness on Au layer on the PWB.
  • Good solderability with SnPb and Pb free solders.

In conclusion, as NiPdAu finish does not pose risk of embrittlement, there is no need of performing degolding on parts using this finish.

featured image source: Texas Instrument

Related

Source: DoEEEt Blog

Recent Posts

Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

29.8.2025
15

Ripple Steering in Coupled Inductors: SEPIC Case

27.8.2025
12

SEPIC Converter with Coupled and Uncoupled Inductors

26.8.2025
25

Coupled Inductors in SEPIC versus Flyback Converters

26.8.2025
18

Non-Linear MLCC Class II Capacitor Measurements Challenges

19.8.2025
51

Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

19.8.2025
19

Common Mistakes in Flyback Transformer Specs

15.8.2025
71

High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

12.8.2025
176

Radiation Tolerance of Tantalum and Ceramic Capacitors

8.8.2025
102

Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

1.9.2025
58

Upcoming Events

Sep 3
15:30 - 17:30 CEST

How to Choose Your Magnetic Supplier

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version