Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Murata Publishes Power Delivery Guide for AI Servers

    Selecting Current Sense Transformers with Würth Elektronik REDEXPERT

    Mechanical Drift Indicator of Tantalum Capacitor Anodes Degradation under Reverse Bias

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    Wk 5 Electronics Supply Chain Digest

    Top 10 Connector Vendors by Product Type

    Bourns Releases High‑Q Air Coil Inductors for RF Aplications

    CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Murata Publishes Power Delivery Guide for AI Servers

    Selecting Current Sense Transformers with Würth Elektronik REDEXPERT

    Mechanical Drift Indicator of Tantalum Capacitor Anodes Degradation under Reverse Bias

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    Wk 5 Electronics Supply Chain Digest

    Top 10 Connector Vendors by Product Type

    Bourns Releases High‑Q Air Coil Inductors for RF Aplications

    CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

EDLC Durable Electrodes and Capacitor for High Frequency Applications

5.2.2025
Reading Time: 5 mins read
A A

source: Department of Materials and Environmental Technology, Tallinn University of Technology, Tallinn, Estonia; ESA SPCD 2018 Symposium

EPCI e-symposium library article

RelatedPosts

ESA Call for Papers 6th Space Passive Component Days – SPCD 2026

High-Density PCB Assemblies For Space Applications

Solid State Polymer Multilayer Capacitors For High Temperature Application

Present work focuses on developing the method of producing carbon rich nanofibrous electrodes by electrospinning for supercapacitor electrodes. The influence of different polymer/carbon ratio to solution viscosity and conductivity were observed. Electrochemical behavior of produced electrodes was evaluated in triethylmethylammonium tetrafluoroborate (TEMABF4) in acetonitrile (ACN) electrolyte by cyclic voltammetry method. The effects of various contents of polymer/ carbons to capacitance and mechanical properties are discussed. Results of experimental work
showed that with electrospun fibrous mats in thickness below 20 μm, capacitance up to 121 F/g was achieved.

published by EPCI under approval of ESA SPCD 2018 organizing committee.


Title: FULLY ELECTROSPUN DURABLE ELECTRODE AND ELECTROCHEMICAL DOUBLE-LAYER CAPACITOR FOR HIGH FREQUENCY APPLICATIONS
Author(s): Siret Malmberg(1,2), Elvira Tarasova(1), Viktoria Vassiljeva(1), Illia Krasnou(1), Mati Arulepp(2), Andres Krumme(1).
Organisation(s): (1) Department of Materials and Environmental Technology, Tallinn University of Technology, Tallinn, Estonia.
(2) Skeleton Technologies OÜ, Estonia.
Symposium: ESA SPCD 2018
Reference: Materials and Processes 1.
ISBN: N/A
e-Sessions Applications: Aerospace
e-Sessions Scope Components: Capacitors
e-Sessions Topics: Technology, Materials


INTRODUCTION

Electrochemical capacitors are energy storage devices with long cycle life and fast charge-discharge capability [1]. Supercapacitors store energy using either ion adsorption (electrochemical double layer capacitors, EDLC) or fast surface redox reactions (pseudocapacitors). Traditional capacitor electrodes are produced in the form of film, activated carbon paste or carbon fabric. However, in recent years electrochemical capacitor electrodes have been also produced from electrospun nanofibers. Electrospinning as fiber forming process has found to be one of alternative methods to
produce durable supercapacitor electrodes [2].

The advantage of the electrospinning method comes from the high specific surface area of the fibrous material, which is directly related to supercapacitor performance at higher frequencies. In addition, electrospun fibers have good mechanical properties including resistance to cyclic loading and vibrations [3]. Another advantage of the electrospinning is the inequality of the composition of fibers, which can be produced from the large variety of different polymers and polymer composites. Therefore, the goal of this study is to develop electrospun fibrous flexible EDLC electrodes, which are suitable for high frequency applications with stable capacitance under specific environmental conditions.

EXPERIMENTAL

First, to achieve the aim of the study the polyacrylonitrile (PAN, Mw 150 000 g/mol, by Sigma Aldrich) was chosen as a binder. For the solutions and dispersions preparations dimethylformamide (DMF, Sigma Aldrich) was used as a solvent and ionic liquid (IL), 1-ethyl-3-methylimidazoliumtetrfluoroborate (EMIMBF4) (produced by IoLiTec) as carbon dispersive and electric conductivity enhancing agents. The properties and electrospinnability of all solutions and dispersions have been studied. For developing the method of preparation of the carbide derived carbon (CDC) containing fibrous electrodes, titanium carbide derived carbon was used, with particle size 5 μm.

Used CDC was produced by Skeleton Technologies OÜ. As the initial particle size of CDC was too large, grinding process was applied to reduce their size down to ~0.5μm. Retsch PM 100 planetary ball mills was used to grind the carbon particles by zirconium oxide balls. Then, to electrospin fibrous electrodes from polymer/carbon dispersions, two dispersion preparation methods have been elaborated and tested. In both methods, the Node ultrasonic homogenizer Bandelin Sonoplus (Germany) was used with a 1 cm diameter nozzle to disperse the carbon particles in the solvent.

Finally, mechanical strength and electrochemical behavior was studied for electrospun membranes. The electrochemical evaluation was done by cyclic voltammetry (VMP3, EC-lab software) mostly. Mechanical testing and vibration tests of the membranes/electrodes were also conducted.

1. Evaluation of the properties of electrospinning solutions and dispersions

The flow curves of all the solutions and dispersions were measured to study their shear viscosity. The rheology measurements were conducted with the Physica MCR 501 rheometer (Anton Paar, Austria) using the cone and plate method in continuous rotation mode. The measuring cone CP25-2 with a diameter of 25 mm and 2° angle was used for the measurements and the shear viscosity was measured at shear rates from 0,01 to 100 s-1. The tests were conducted at room temperature. The electric conductivity was measured for all the prepared solutions and dispersions using a conductivity meter (Metler Toledo Seven Compact) at room temperature.

2. Electrospinning setup and conditions

Samples were electrospun at room temperature and humidity, at the voltage of 10 kV, the distance between spinneret and collector of 10 cm and the pumping rate of 0.2 ml/h. The membranes were electrospun to the drum collector with dimensions of 10 cm in diameter and 5 cm in width. As a spinneret the stainless steel needle with inner diameter of 0.1 mm was used, which connected to 1 ml plastic syringe.

3. Electrochemical evaluation of EDLC cell

The capacitance of electrospun electrodes was studied in EDLC test cell. Cellulose based ion-permeable separator paper Nippon Kodashi with thickness of 2*25 μm (TF44-25) was used in measuring EDLC cell. From electrospun mats, electrodes of size 2×3 cm and 3×4 cm were cut out. Each electrode was then pressed under flat plate pressing machine at 25 bars (per surface area 1.77 cm2) and 75°C. After that, electrodes were dried under vacuum at 110°C for 72 h to get rid of any excess moisture before assembling into the cell. To provide better electric connection with cell, double side carbon coated aluminum foil (Toyal foil with thickness 22 μm) was used as a collector. The assembled cell firstly was dried under vacuum at 110°C during 72 h and then filled with 1.8 M TEMABF4/ACN electrolyte.

The electrochemical properties of fully assembled cells were determined using cyclic voltammetry (two-electrode experiment). In cyclic voltammetry (CV), the current at the working electrode versus the applied voltage is plotted to give the cyclic voltammogram. The measuring of current was done using different sweep rates (1, 2, 5, 10 and 50mV/s). From the CV curves, the cell capacitance in Farads (F) was firstly calculated and next, specific capacitance in F/g per mass of active carbonous material has been calculated.

… read more at the full paper below…

CONCLUSION

In present study electrospun fibrous flexible EDLC electrodes have been developed. This material is suitable for higher frequency applications without significant loss of capacitance under specific environmental conditions. The developed flexible fibrous electrode PAN+ TiC/CB + EMIMBF4 showed the specific capacitance up to 121 F/g with CDC and CB ratio 80/ 20 respectively.

Produced electrode showed good mechanical properties as specific stress for fibrous electrodes were almost 20 times higher compared to the roll casted mats. Furthermore, fibrous electrodes can be easily folded or twisted without inducing any visual damage. This combination of flexibility, folding and twisting possibility is desirable for supercapacitor electrodes.

Developed fibrous electrodes were tested in EDLC cells under vibration, the specific capacitance dropped after vigorous vibration by only 5%, which indicates that electrospun electrodes can withstand rather high loads (vibrations) with minimal lose in energy.

Acknowledgements
The European Space Agency, ESA contract number 4000119258/16/NL/CBi “Fully electrospun durable electrode and electrochemical double-layer capacitor for high frequency applications”.

References
[1] Yonggang Wang , Yanfang Song and Yongyao Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications, Chem. Soc. Rev., 2016, 45, 5925-5950
[2] Mao, Xianwen, T. Hatton, and Gregory Rutledge. “A Review of Electrospun Carbon Fibers as Electrode Materials for Energy Storage.” COC 17, no. 13 (June 1, 2013): 1390–1401
[3] Selina Liu, Matt Kok, Yongwook Kim, John L. Barton, Fikil R. Brushett and Jeff Gostick, Evaluation of Electrospun Fibrous Mats Targeted for Use as Flow Battery Electrodes, J. Electrochem. Soc. 2017 volume 164, issue 9, 2038-2048
[4] G. Chatel and D. R. MacFarlane, Ionic liquids and ultrasound in combination: synergies and challenges, Chem. Soc. Rev., 2014, 43, 8132

 


read the full technical paper in pdf here:

 

 

 

 

and presentation here:

 

 

 

 


 

Related

Recent Posts

Murata Publishes Power Delivery Guide for AI Servers

4.2.2026
6

Mechanical Drift Indicator of Tantalum Capacitor Anodes Degradation under Reverse Bias

3.2.2026
15

Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

2.2.2026
18

CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

28.1.2026
46

ESA Call for Papers 6th Space Passive Component Days – SPCD 2026

28.1.2026
42

Samsung Q4 2025 Results: MLCC focus for AI, Server and Automotive

26.1.2026
99

Capacitor Technology Dossier

26.1.2026
137

Passive Components in Quantum Computing

22.1.2026
152

Miniaturization of MLCCs and Electrolytics, KAVX Tech Chat

21.1.2026
79

Upcoming Events

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

Mar 3
16:00 - 17:00 CET

Cybersecurity at the Eleventh Hour – from RED to CRA – Information and Discussion

Mar 21
All day

PSMA Capacitor Workshop 2026

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version