Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Releases Industry First Automotive SMD Y1 Safety Ceramic Capacitors

    Researchers Enhanced 2D Ferromagnets Performance

    Bourns Releases Two High Current Common Mode Choke Models

    Electronics Weekly Announcing Finalists for Elektra Awards 2025

    Exxelia Exhibit at Electronica India September 17–19, 2025

    Würth Elektronik Announces 2025 Digital WE Days Virtual Conference

    VINATech Unveils Hybrid Energy Storage System to Revolutionize Grid Stability and Power Delivery

    SCHURTER Releases High Performance EV-Fuse

    Panasonic Industry to Double Production of MEGTRON PCB Materials

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Releases Industry First Automotive SMD Y1 Safety Ceramic Capacitors

    Researchers Enhanced 2D Ferromagnets Performance

    Bourns Releases Two High Current Common Mode Choke Models

    Electronics Weekly Announcing Finalists for Elektra Awards 2025

    Exxelia Exhibit at Electronica India September 17–19, 2025

    Würth Elektronik Announces 2025 Digital WE Days Virtual Conference

    VINATech Unveils Hybrid Energy Storage System to Revolutionize Grid Stability and Power Delivery

    SCHURTER Releases High Performance EV-Fuse

    Panasonic Industry to Double Production of MEGTRON PCB Materials

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Effect of Thermal Stress on Life of DC link Capacitors for Smart Grid

12.2.2025
Reading Time: 4 mins read
A A

Researchers from China published article “Effect of thermal stress on the life of DC link capacitors for smart grid” in Journal Nature.

Introduction:
The study explores how thermal stress impacts the lifespan of DC link film capacitors (DCLC), which are crucial components in smart grids. The capacitors use biaxially oriented polypropylene (BOPP) film, known for its excellent electrical properties and low dielectric loss. The focus is on the breakdown strength and life aging of DCLCs under various heat setting temperatures (HSTs) and operating temperatures.

RelatedPosts

Vishay Releases Industry First Automotive SMD Y1 Safety Ceramic Capacitors

Researchers Enhanced 2D Ferromagnets Performance

Bourns Releases Two High Current Common Mode Choke Models

Thermal stress significantly impacts the lifespan of DC link capacitors (DCLC), vital in power electronics within smart grids. This study investigates the thermal stress mechanisms affecting DCLC, focusing on heat setting temperatures (HSTs) and operating temperature (OT). Experiments revealed that increased HST enhances breakdown strength and lifespan, while higher OT deteriorates both, emphasizing thermal stress management in DCLC design for improved performance.

Key Components and Mechanism:

  • DCLC Construction: The DCLCs in the study comprise a shell, terminal, elements, connecting copper bar, insulating parts, and filled insulating medium. Cylindrical elements are used, wrapped with metallized polypropylene films.
  • Heat Setting Process (HSP): The HSP involves placing the elements, applying heat, cooling, and inspection. This process removes residual thermal stress, leading to irreversible thermal shrinkage, improving breakdown field strength, and reducing moisture content.

Experimental Methods:

  1. Sample Preparation: DCLCs with different HSTs (105 °C and 110 °C) were prepared. Samples were measured for diameter changes, withstand voltage, and life aging.
  2. Element Diameter Measurement: Higher HST results in larger diameter changes due to the shrinkage of BOPP film.
  3. Withstand Voltage Test: The breakdown strength of DCLC was tested by applying increasing voltage until failure.
  4. Life Aging Experiment: Performed at various temperatures (55 °C, 70 °C, 75 °C, 80 °C, and 85 °C) and at 1.4 times the rated voltage (1.4 UₙDC).

Findings:

  1. Effect of HST:
  • Increasing HST by 5 °C improved breakdown strength by 2.86% (from 7,000 V to 7,200 V) and increased life span from 1,500 hours to 1,700 hours.
  • The initial increase in capacitance due to HSP was followed by a decrease over time.
  • Higher HST enhances molecular arrangement and crystallinity, reducing ion movement, increasing insulation resistance, and prolonging the life of DCLC.
  1. Effect of Operating Temperature:
  • Higher temperatures led to a significant reduction in lifespan (from 4,200 hours at 55 °C to 500 hours at 85 °C).
  • Capacitance change was more pronounced at higher temperatures.
  • Lifespan analysis showed that increasing operating temperature adversely affected DCLC performance, reducing breakdown strength and increasing dielectric loss.

Conclusion:
The study concluded that the lifespan of DCLC could be significantly enhanced by optimizing HST and reducing operating temperatures. These findings are pivotal for the industrial production of high-performance DCLCs for high-power applications in smart grids. The research underlines the importance of thermal stress management in extending the durability and reliability of capacitors used in power electronics.

Read the full paper:

Sun, XW., Qiao, Y., Li, YD. et al. Effect of thermal stress on the life of DC link capacitors for smart grid. Sci Rep 15, 3968 (2025). https://doi.org/10.1038/s41598-025-88522-2, DOI https://doi.org/10.1038/s41598-025-88522-2

Related

Source: Journal Nature

Recent Posts

Vishay Releases Industry First Automotive SMD Y1 Safety Ceramic Capacitors

17.9.2025
2

Electronics Weekly Announcing Finalists for Elektra Awards 2025

16.9.2025
6

Exxelia Exhibit at Electronica India September 17–19, 2025

15.9.2025
28

Würth Elektronik Announces 2025 Digital WE Days Virtual Conference

15.9.2025
11

VINATech Unveils Hybrid Energy Storage System to Revolutionize Grid Stability and Power Delivery

15.9.2025
18

5th PCNS Awards Outstanding Passive Component Papers

17.9.2025
61

TDK Releases Ultra-small PFC Capacitors

10.9.2025
35

KYOCERA AVX Releases Novel Mini BME Stacked Ceramic Capacitors

10.9.2025
28

Vishay Releases Class 1 Leaded High Voltage Ceramic Disc Capacitors

10.9.2025
23

TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

5.9.2025
32

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version