Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

    Stackpole Offers High Voltage Plate Resistors up to 40KV

    How to Manage Supercapacitors Leakage Current and Self Discharge 

    Qualification of Commercial Supercapacitors for Space Applications

    Experimental Evaluation of Wear Failures in SMD Inductors

    Resonant Capacitors in High-Power Resonant Circuits

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

    Stackpole Offers High Voltage Plate Resistors up to 40KV

    How to Manage Supercapacitors Leakage Current and Self Discharge 

    Qualification of Commercial Supercapacitors for Space Applications

    Experimental Evaluation of Wear Failures in SMD Inductors

    Resonant Capacitors in High-Power Resonant Circuits

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Electrolyte Selection and Performance in Supercapacitors

3.10.2025
Reading Time: 6 mins read
A A

This article provides a comprehensive technical framework overview for electrolyte selection in supercapacitor design.

Introduction

Supercapacitors are at the forefront of next-generation energy storage, offering rapid charge–discharge cycles, high power density, and long operational lifetimes. While electrode materials often receive the spotlight, the electrolyte is equally decisive. It not only defines the electrochemical stability window (ESW) but also governs ion transport, interfacial dynamics, and long-term reliability.

Key Points

  • Electrolyte choice dictates both energy density and power density through its ESW and ionic conductivity.
  • Ion size, solvation, and mobility determine pore accessibility and capacitance efficiency.
  • Electrolyte–electrode compatibility influences degradation, self-discharge, and cycle life.
  • Hybrid and redox-active electrolytes represent a frontier for enhancing performance beyond traditional limits.

Electrolyte Fundamentals and Governing Equations

The energy density of a supercapacitor is expressed as:

$$ E = \frac{1}{2} C V^2 $$

where C is the capacitance and V is the maximum operating voltage. Since V is capped by the electrolyte’s ESW, extending this window is a direct route to higher energy density. The power density is approximated by:

$$ P = \frac{V^2}{4R} $$

where R is the equivalent series resistance (ESR), heavily influenced by electrolyte conductivity and viscosity. Thus, the electrolyte simultaneously governs both energy and power performance.

RelatedPosts

Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

Connector PCB Design Challenges

Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

Aqueous Electrolytes: High Conductivity, Narrow Window

Aqueous electrolytes excel in ionic conductivity (10–100 mS/cm), enabling ultrafast charge–discharge. However, water decomposition limits the ESW to ~1.23 V. Recent strategies to extend this include:

  • “Water-in-salt” electrolytes: Highly concentrated LiTFSI solutions suppress water activity, extending ESW to ~3 V.
  • pH-neutral electrolytes: Safer and less corrosive, though with reduced ionic mobility.
  • Hybrid aqueous systems: Combining salts with additives to stabilize electrode interfaces.

Organic Electrolytes: Expanding Voltage

Organic solvents such as acetonitrile (AN) and propylene carbonate (PC) allow ESWs up to 2.7–3 V, significantly boosting energy density. However, their ionic conductivity is typically one order of magnitude lower than aqueous systems. Key challenges include:

  • High flammability and toxicity (especially AN).
  • Viscosity and ion pairing effects reducing mobility.
  • Electrode passivation and SEI (solid electrolyte interphase) formation, which can both stabilize and hinder performance.

Ionic Liquids: Stability at a Cost

Ionic liquids (ILs) offer ESWs up to 4 V, thermal stability, and negligible vapor pressure. Their drawbacks are high viscosity and cost, which limit ion mobility and scalability. Recent advances include:

  • Binary IL mixtures: Reducing viscosity while retaining wide ESW.
  • Functionalized ILs: Tailoring cation/anion structures for specific electrode compatibility.
  • IL–organic hybrids: Balancing conductivity and voltage stability.

Solid and Quasi-Solid Electrolytes

Solid-state electrolytes, including polymer gels (e.g., PVA-KOH, PEO-LiClO4), provide mechanical stability, safety, and flexibility. They are particularly attractive for wearable and flexible electronics. However, their ionic conductivity (10-4–10-3 S/cm) is significantly lower than liquid systems. Nanofiller incorporation (e.g., SiO2, TiO2) and ionic liquid doping are promising strategies to enhance conductivity.

Electrode–Electrolyte Interactions

The electrolyte’s role extends beyond bulk transport to interfacial phenomena:

  • Ion size vs. pore size: Micropores (<1 nm) require desolvation of ions, which can limit kinetics but increase capacitance.
  • Solvation dynamics: Strongly solvated ions (e.g., Li+ in water) face higher desolvation barriers.
  • Specific adsorption: Certain ions (e.g., SO42-) interact strongly with carbon surfaces, altering double-layer structure.
  • Electrochemical stability: Side reactions at the interface can lead to gas evolution, electrode degradation, or SEI formation.

Comparative Performance Table

Electrolyte TypeConductivity (S/cm)ESW (V)AdvantagesLimitations
Aqueous0.1–1.01.0–2.0High conductivity, low costNarrow voltage window
Organic0.01–0.12.5–3.0Wide voltage, higher energy densityFlammable, toxic, lower conductivity
Ionic Liquids0.001–0.013.5–4.0Stable, non-volatileViscous, expensive
Solid/Quasi-Solid10-4–10-31.5–3.0Safe, flexible, stableLow conductivity

Emerging Directions

The frontier of electrolyte research is moving toward multifunctional and hybrid systems:

  • Redox-active electrolytes: Incorporating redox couples (e.g., I–/I3–, quinones) to add pseudocapacitance and boost energy density.
  • Deep eutectic solvents (DES): Low-cost, tunable alternatives to ILs with wide ESWs.
  • Hybrid aqueous–organic systems: Combining safety and conductivity of water with voltage stability of organics.
  • Interface engineering: Surface functionalization of electrodes to optimize ion adsorption and suppress side reactions.

Conclusion

Electrolytes are not passive media but active enablers of supercapacitor performance. From aqueous to organic, ionic liquid, and solid-state systems, each class offers unique trade-offs between conductivity, voltage, safety, and cost. Future breakthroughs will likely emerge from hybrid systems and interface engineering, where electrolyte chemistry is co-designed with electrode architecture. By integrating these deeper insights, researchers and engineers can push supercapacitors toward higher voltages, safer operation, and broader application in the global energy transition.

Further references:

  • Electrolyte selection for supercapacitive devices: a critical review, https://doi.org/10.1039/C9NA00374F
  • A review on electrolytes for supercapacitor devices, https://doi.org/10.1007/s43939-023-00065-3

Related

Recent Posts

Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

3.10.2025
2

Connector PCB Design Challenges

3.10.2025
11

Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

2.10.2025
11

How to Manage Supercapacitors Leakage Current and Self Discharge 

1.10.2025
14

Qualification of Commercial Supercapacitors for Space Applications

1.10.2025
16

Experimental Evaluation of Wear Failures in SMD Inductors

1.10.2025
20

Resonant Capacitors in High-Power Resonant Circuits

1.10.2025
19
a Schematic diagram of the BNT-based components constructed based on the entropy-increase strategy. b Digital photograph, cross-sectional SEM image, and EDS mappings of the MLCCs. c Unipolar P-E loops of MLCCs as a function of applied E. d Wrec and η of the MLCCs as a function of applied E. The comparison of (e) Wrec and η, (f) η and UF of the MLCCs with those of other recently reported state-of-the-art MLCCs. source: Nature Communications

Researchers Proposed Enhanced Energy Storage MLCC

1.10.2025
10

Improving SMPS Performance with Thermal Interface Material

30.9.2025
9

Polymer Tantalum Capacitors Beyond AEC-Q200 LEO Satellites

30.9.2025
39

Upcoming Events

Oct 8
11:00 - 12:00 CEST

PCB Online Shop – simply “Made in Germany” by Würth Elektronik

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version