Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Exxelia to Present Smart Integrated Magnetics and MML Film Capacitors at SIAE25 

    What Track Width To Use When Routing PCB

    YAGEO Unveils PulseChip LAN Transformer

    Bourns Releases Automotive Impedance Matching Transformer

    Stackpole Offers Affordable Current Sense Chip Resistors

    Knowles Extends Range and Performance of C0G MLCC Capacitors

    May 2025 ECST Component Results Show Moderating Decline in Sales Sentiment

    Panasonic Releases New Aluminum Hybrid Capacitors with High Ripple Current in Compact Size

    5th PCNS Conference Registration Now Open!

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Exxelia to Present Smart Integrated Magnetics and MML Film Capacitors at SIAE25 

    What Track Width To Use When Routing PCB

    YAGEO Unveils PulseChip LAN Transformer

    Bourns Releases Automotive Impedance Matching Transformer

    Stackpole Offers Affordable Current Sense Chip Resistors

    Knowles Extends Range and Performance of C0G MLCC Capacitors

    May 2025 ECST Component Results Show Moderating Decline in Sales Sentiment

    Panasonic Releases New Aluminum Hybrid Capacitors with High Ripple Current in Compact Size

    5th PCNS Conference Registration Now Open!

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

EMI Filters in Power Electronics

1.8.2024
Reading Time: 4 mins read
A A

This article based on Knowles Precision Devices blog explains role of EMI Filters in power electronics.

As power conversion systems evolve to leverage higher voltages and wide bandgap semiconductors like silicon carbide (SiC) and gallium nitride (GaN), system designers face new challenges in managing the electromagnetic interference (EMI) frequency landscape. Here’s how EMI filters play an important role in ensuring safe operation at higher voltages.

RelatedPosts

Knowles Extends Range and Performance of C0G MLCC Capacitors

Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

RF Inductors Key Characteristics and Applications

The Role of EMI Filters in Power Electronics 

EMI filters are designed to keep internally generated electrical noise from conducting across the system and negatively impacting operations elsewhere. In other words, they contain and manage noise. In power electronics, they take the form of power line filters that protect the line from upstream noise.

While the list may differ depending on system requirements, the core components of a power line filter include:  

  • A common-mode filter circuit with two or more line-to-chassis capacitors and a common-mode inductor
  • A differential mode (DM) filter circuit with at least one pair of series inductors and one line-to-line capacitor
  • Compensation networks to adjust the filter’s quality (Q) factor and adapt the output impedance as needed
  • Transient voltage suppression device(s) to defend against surges 

Figure 1 shows an EMI filter structure that could be useful for single-phase AC applications or for DC power inputs.

Figure 1: EMI filter structure designed for single-phase AC applications or DC power inputs 

L1, a common-mode choke, suppresses EMI and improves signal integrity. L1, C5 and C6 work together to manage second-order losses. C5 and C6 are commonly known as Y capacitors. L2 and L3 are the two inductors that form the differential-mode inductance. C1, C2 and C4, also known as X capacitors, are line-to-line capacitors for differential-mode loss. With common- and differential-mode losses and two RC shunt networks (R1, C3 and R2, C7), quality factor and output impedance are controllable.  

Normal/Differential Mode vs. Common Mode 

Differential-mode, or normal-mode, noise is a voltage differential that appears between the power line and a neutral or return line, where power naturally flows through an electric circuit. These currents travel in opposite directions on the circuit’s conductors. Normal-mode transients have a direct path through the circuit, so, naturally, they have an opportunity to degrade system performance.

Power supplies and motor controls that leverage high-frequency switching, like pulse width modulation (PWM) motor controls, are major differential-mode noise contributors. For example, with PWM controls, switching creates differential-mode noise at the source because of high ripple currents in DC link capacitors. 

Alternatively, common-mode currents travel in the same direction on the circuit’s conductors, so they return on a separate path. This kind of noise is more common between ground and two normal-mode lines. Since this type of noise is more common on more lines, it’s cause for concern; analog and digital circuits are susceptible to poor function and failure. Common-mode noise tends to be higher frequency than differential-mode noise because it originates from capacitive coupling. Higher frequency leads to coupling between components and lines. More coupling, more common-node noise. 

The Role of Safety Capacitors in EMI Filter Circuits for Power Electronics 

X capacitors and Y capacitors, identified in the description of Figure 1, are designated safety capacitors. Since they’re exposed to hazardous voltages more than other components, certification ensures that they’ll operate efficiently and safely under more extreme conditions.  

Class-X and Class-Y capacitors minimize EMI in different applications. Class-X, or “across-the-line” capacitors, are placed between wires carrying AC current to prevent shock in the event of failure. Class-Y capacitors, or “line-to-ground” capacitors, offer line-to-ground protection and are rigorously tested to minimize shock risk in the event of a ground failure. X1/Y1 safety capacitors combine both classes and can function appropriately regardless of where they’re placed in the circuit. 

Related

Source: Knowles Precision Devices

Recent Posts

Exxelia to Present Smart Integrated Magnetics and MML Film Capacitors at SIAE25 

6.6.2025
4

Knowles Extends Range and Performance of C0G MLCC Capacitors

6.6.2025
2

Panasonic Releases New Aluminum Hybrid Capacitors with High Ripple Current in Compact Size

6.6.2025
1

5th PCNS Conference Registration Now Open!

5.6.2025
10

YAGEO Introduces Automotive Supercapacitors for Stable BMS in EVs

5.6.2025
13

Capacitance Definition of Non-Linear Voltage Dependent Capacitors

5.6.2025
11

Passive Electronic Components Lead-times Update

4.6.2025
37

Quantic Eulex Presents Ceramic Gap RF Capacitors

4.6.2025
10

YAGEO Unveils 150C Aluminum Hybrid Capacitor for High-Performance Power Applications

4.6.2025
14

Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

30.5.2025
34

Upcoming Events

Jun 24
17:00 - 18:00 CEST

Ultra-Compact and Efficient Switched-Capacitor Power Converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version