Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Inductor Resonances and its Impact to EMI

    Developing Low Inductance Film Capacitor using Bode 100 Analyzer

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Würth Elektronik Releases High Performance TLVR Coupled Inductors

    YAGEO Extends Rectangular Aluminum Electrolytic Capacitor Family

    Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

    Littelfuse Releases Industry-First SMD Fuse with 1500A Interrupting Rating at 277V

    TDK Unveils Industry Highest Rated Current Multilayer Chip Beads

    Vishay Releases Automotive SMD Thick Film Power Resistor for Enhanced Protection Against Short Transient Pulses

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Inductor Resonances and its Impact to EMI

    Developing Low Inductance Film Capacitor using Bode 100 Analyzer

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Würth Elektronik Releases High Performance TLVR Coupled Inductors

    YAGEO Extends Rectangular Aluminum Electrolytic Capacitor Family

    Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

    Littelfuse Releases Industry-First SMD Fuse with 1500A Interrupting Rating at 277V

    TDK Unveils Industry Highest Rated Current Multilayer Chip Beads

    Vishay Releases Automotive SMD Thick Film Power Resistor for Enhanced Protection Against Short Transient Pulses

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

EMI Filters in Power Electronics

1.8.2024
Reading Time: 4 mins read
A A

This article based on Knowles Precision Devices blog explains role of EMI Filters in power electronics.

As power conversion systems evolve to leverage higher voltages and wide bandgap semiconductors like silicon carbide (SiC) and gallium nitride (GaN), system designers face new challenges in managing the electromagnetic interference (EMI) frequency landscape. Here’s how EMI filters play an important role in ensuring safe operation at higher voltages.

RelatedPosts

RF Inductors Key Characteristics and Applications

Stacked Ceramic Capacitors Improve Efficiency in Power and RF Applications

Capacitors in Pulse Forming Network

The Role of EMI Filters in Power Electronics 

EMI filters are designed to keep internally generated electrical noise from conducting across the system and negatively impacting operations elsewhere. In other words, they contain and manage noise. In power electronics, they take the form of power line filters that protect the line from upstream noise.

While the list may differ depending on system requirements, the core components of a power line filter include:  

  • A common-mode filter circuit with two or more line-to-chassis capacitors and a common-mode inductor
  • A differential mode (DM) filter circuit with at least one pair of series inductors and one line-to-line capacitor
  • Compensation networks to adjust the filter’s quality (Q) factor and adapt the output impedance as needed
  • Transient voltage suppression device(s) to defend against surges 

Figure 1 shows an EMI filter structure that could be useful for single-phase AC applications or for DC power inputs.

Figure 1: EMI filter structure designed for single-phase AC applications or DC power inputs 

L1, a common-mode choke, suppresses EMI and improves signal integrity. L1, C5 and C6 work together to manage second-order losses. C5 and C6 are commonly known as Y capacitors. L2 and L3 are the two inductors that form the differential-mode inductance. C1, C2 and C4, also known as X capacitors, are line-to-line capacitors for differential-mode loss. With common- and differential-mode losses and two RC shunt networks (R1, C3 and R2, C7), quality factor and output impedance are controllable.  

Normal/Differential Mode vs. Common Mode 

Differential-mode, or normal-mode, noise is a voltage differential that appears between the power line and a neutral or return line, where power naturally flows through an electric circuit. These currents travel in opposite directions on the circuit’s conductors. Normal-mode transients have a direct path through the circuit, so, naturally, they have an opportunity to degrade system performance.

Power supplies and motor controls that leverage high-frequency switching, like pulse width modulation (PWM) motor controls, are major differential-mode noise contributors. For example, with PWM controls, switching creates differential-mode noise at the source because of high ripple currents in DC link capacitors. 

Alternatively, common-mode currents travel in the same direction on the circuit’s conductors, so they return on a separate path. This kind of noise is more common between ground and two normal-mode lines. Since this type of noise is more common on more lines, it’s cause for concern; analog and digital circuits are susceptible to poor function and failure. Common-mode noise tends to be higher frequency than differential-mode noise because it originates from capacitive coupling. Higher frequency leads to coupling between components and lines. More coupling, more common-node noise. 

The Role of Safety Capacitors in EMI Filter Circuits for Power Electronics 

X capacitors and Y capacitors, identified in the description of Figure 1, are designated safety capacitors. Since they’re exposed to hazardous voltages more than other components, certification ensures that they’ll operate efficiently and safely under more extreme conditions.  

Class-X and Class-Y capacitors minimize EMI in different applications. Class-X, or “across-the-line” capacitors, are placed between wires carrying AC current to prevent shock in the event of failure. Class-Y capacitors, or “line-to-ground” capacitors, offer line-to-ground protection and are rigorously tested to minimize shock risk in the event of a ground failure. X1/Y1 safety capacitors combine both classes and can function appropriately regardless of where they’re placed in the circuit. 

Related

Source: Knowles Precision Devices

Recent Posts

Inductor Resonances and its Impact to EMI

16.5.2025
4

Developing Low Inductance Film Capacitor using Bode 100 Analyzer

15.5.2025
27

YAGEO Extends Rectangular Aluminum Electrolytic Capacitor Family

15.5.2025
24

Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

14.5.2025
28

Exxelia Power Film Capacitors Support Critical Systems Across Various Industries

13.5.2025
22

H2-Assisted Thermal Treatment of Electrode Materials Increases Supercapacitors Energy Density

13.5.2025
9

Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

12.5.2025
25

Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

6.5.2025
105

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
59

Tariffs Crush Sales Sentiment in April 2025 ECST Results

5.5.2025
81

Upcoming Events

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Developing Low Inductance Film Capacitor using Bode 100 Analyzer

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • What is the Difference Between X8G, X8L and X8R Ceramic Capacitor Dielectrics?

    0 shares
    Share 0 Tweet 0
  • Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version