Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

    Littelfuse Unveils High-Use Tactile Switches with 2 Million Cycle Lifespan

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

    Littelfuse Unveils High-Use Tactile Switches with 2 Million Cycle Lifespan

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Filters in Radar Receivers

28.3.2024
Reading Time: 4 mins read
A A

This article based on Knowles Precision Devices blog explains role and function of filter in radar receivers application.

In the article RF Components for Radar Application,  we provided an overview of the key functional units in radar, including duplexing, filtering, power amplification, waveform generation, low-noise amplification (LNA), receiving, and analog-to-digital conversion (ADC). While in the third installment we talked about filtering in terms of switch filter banks, in this post we will dive more into the jobs filters must perform in radar receivers.  

RelatedPosts

RF Inductors Key Characteristics and Applications

Stacked Ceramic Capacitors Improve Efficiency in Power and RF Applications

Capacitors in Pulse Forming Network

In general, filters are responsible for solving a variety of problems in the radar receiver. You can think of a filter as the problem-solving assistant in the system that comes along and tidies up different messes that are either outside the radar or made by components in the radar itself. Take a look at the radar functions diagram we discussed in the beginning of the series (Figure 1) and think about the receiver.  

Figure 1. Functional components of a radar system. 

A typical heterodyne receiver has several filter jobs that need to be done, depending on the problems that need to be solved/messes that need to be cleaned up (Figure 2). Let’s take a closer look at these problems and the filtering technology that can be used to solve them. 

Figure 2. A diagram of a heterodyne receiver. 

Solving Signal Problems in a Radar Receiver with Filtering 

In the radar receiver, the first problem that must be solved is selecting the band of interest and removing any signals outside the band of interest that would confuse or overwhelm the receiver – this is what the first filter must take care of. The second problem to be solved is to remove any signals close enough to the band of interest that exist at mixer image. The second filter takes care of these mixer related messes.  

The third set of problems then arise when we get to the ADC. Here we need to remove any messes made by the amplifier and ensure the ADC only “sees” the correct alias band. A high-rejection filter close to the ADC can take care of this. In the case of the heterodyne approach, this job can be made easier by making the intermediate frequency (IF) fall well below the ADC’s Nyquist limit (which defines the maximum frequency that can be accurately captured and represented without distortion when using a specific sampling rate). 

With recent ADC technology innovations, it is now possible to perform direct sampling up to X band frequencies, depending on the sensitivity required. Since direct sampling digitizes signals directly, the mixer and some of the amplifiers in the receiver can be removed (Figure 3), eliminating some of the messes the filters need to clean up. 

Figure 3. An example of a direct sampling receiver.  

What we are left with when a direct sampling receiver is used is problem 1 – selecting the correct band of interest and removing out of band interference – and problem 3 – cleaning up the interference generated by the amplifier and selecting the alias bands of the ADC. We’ve effectively eliminated problem 2. Depending on the performance required in the receiver, and the RF input to the ADC, a high rejection level may be required to achieve this. For example, in an X band direct sampling system, you may see a broadband, low-loss, and high-rejection filter such as our B096QC2S in this role. 

As direct sampling receivers evolve, fully digital beamforming becomes realistic at some of the key radar bands such as S and X and eventually Ka. Knowles’ filter technology is rapidly advancing to keep pace with these possibilities. 

Related

Source: Knowles Precision Devices

Recent Posts

Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

9.5.2025
1

KYOCERA AVX Releases Compact High-Directivity Couplers

7.5.2025
15

Tariffs Crush Sales Sentiment in April 2025 ECST Results

5.5.2025
59

High-Density PCB Assemblies For Space Applications

2.5.2025
7

Solid State Polymer Multilayer Capacitors For High Temperature Application

2.5.2025
29

Graphene-Based BOSC Bank Of Supercapacitor Cells

2.5.2025
13

W-band Self-Biased Circulators for Next Gen VHTS Satellites

1.5.2025
3

Hybrid Energy Storage System for Nanosatellite Applications

1.5.2025
9

Failure Analysis After In Orbit Anomaly On Bimetallic Thermostat

1.5.2025
5

Novel Safe-Life Concept For Circuit Protection Devices for High-Reliability Applications

30.4.2025
9

Upcoming Events

May 14
11:00 - 12:00 CEST

Reliable RIGID.flex PCBs for Critical Applications – Made in Europe

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Tariffs Crush Sales Sentiment in April 2025 ECST Results

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version