Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Common Mistakes in Flyback Transformer Specs

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Stackpole Extends Voltage of High Temp Chip Resistors

    High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Common Mistakes in Flyback Transformer Specs

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Stackpole Extends Voltage of High Temp Chip Resistors

    High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

High Density Carbon Tube Filter Capacitor

7.8.2024
Reading Time: 3 mins read
A A

A research team led by Prof. MENG Guowen and Prof. HAN Fangming from the Hefei Institutes of Physical Science (HFIPS) of the Chinese Academy of Sciences (CAS), along with Prof. WEI Bingqing from the University of Delaware and Prof. LI Xiaoyan from Tsinghua University, constructed high-density three-dimensional carbon tube nanoarray electrodes for use in line-filtering capacitors, showcasing immense potential as high-performance miniaturized filter devices.

The research results were published in Nano-Micro Letters recently.

RelatedPosts

Common Mistakes in Flyback Transformer Specs

Vishay Releases Miniature SMD Trimmers for Harsh Environments

Würth Elektronik Releases Push-Button and Main Switches

Filter capacitors are essential for turning fluctuating voltage signals into steady direct current. Aluminum electrolytic capacitors (AECs) are commonly used but are quite large and have limited capacitance, which makes it hard to shrink modern electronics. Electric double-layer supercapacitors (EDLCs) have much higher energy density, making them a promising alternative for smaller filter capacitor applications. However, traditional carbon-based EDLCs have slow ion transport, making it difficult for them to achieve both high energy density and quick frequency response needed for line-filtering.

In this research, they conducted a systematic study aimed at precisely manipulating the pore structure of three-dimensional interconnected porous anodized aluminum oxide (3D-AAO) templates. They achieved a remarkable feat by continuously tuning the vertical pore diameter of 3D-AAO from 70 to 250 nm and the inter-pore spacing from 100 to 450 nm. Leveraging these tunable templates, they fabricated 3D compactly arranged carbon tube (3D-CACT) nanoarray electrodes via chemical vapor deposition. Specific surface area tests revealed that reducing both the pore diameter and inter-spacing significantly augmented the electrode’s surface area.

The resultant 3D-CACT electrode-based device exhibited exceptional frequency response performance characterized by a phase angle of -80.2° at 120 Hz, an ultra-low equivalent series resistance of less than 0.07 Ω cm2, and a rapid resistance-capacitance time constant of 0.25 ms. Notably, its specific areal capacitance at 120 Hz reached 3.23 mF cm-2, far surpassing that of commercial AECs (~0.08 mF cm-2) and previously reported aqueous sandwich-type line-filtering EDLCs. This underscores the 3D-CACT nanoarray’s ability to facilitate efficient ion transport and offer abundant charge adsorption sites.

Furthermore, researchers demonstrated the scalability of their approach by connecting six and ten sets of identical 3D-CACT-based EDLCs in series, successfully extending the capacitors’ operating voltage while preserving their rapid frequency response and low loss characteristics. To showcase the practicality of their invention, they employed ten series-connected devices as filters, effectively converting various alternating current inputs (including sinusoidal, square, triangular, noisy waves, and pulsed signals from a rotating triboelectric nanogenerator) into smooth direct current signals, with filtering performance comparable to commercial AECs.

“The high-density 3D-CT nanoarray electrodes offer promising solutions for high-performance filter capacitors, advancing miniaturized power systems and electronics,” said Prof. MENG, “and the structure-tunable template-assisted method enables the size customization of nanomaterials and promote innovative integrable microdevices development.”

Read the original article:

High Density 3D Carbon Tube Nanoarray Electrode Boosting the Capacitance of Filter Capacitor, DOI: 10.1007/s40820-024-01458-6 

Related

Source: Nano-Micro Letters Journal

Recent Posts

Common Mistakes in Flyback Transformer Specs

15.8.2025
14

High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

12.8.2025
77

Radiation Tolerance of Tantalum and Ceramic Capacitors

8.8.2025
65

TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

7.8.2025
31

Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

6.8.2025
37

Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

6.8.2025
51

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

6.8.2025
41

How to Calculate the Output Capacitor for a Switching Power Supply

6.8.2025
48

Additive Manufacturing of Mn-Zn Ferrite Planar Inductors

4.8.2025
26

Evaluation and Modeling of Supercapacitors for Reliability of Lifetime Predictions

4.8.2025
35

Upcoming Events

Aug 27
17:00 - 18:00 CEST

Capacitor Assemblies for High-Power Circuit Designs

Sep 3
15:30 - 17:30 CEST

How to Choose Your Magnetic Supplier

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version