Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

    Conductive Polymer Capacitor Market and Design‑In Guide to 2035

    TDK Releases High Performance 105C DC Link Film Capacitors

    YAGEO Offers Automotive MOVs for EV and AI power

    YAGEO Acquires 100% of Shares of Shibaura Electronics

    Wk 3 Electronics Supply Chain Digest

    Vishay Extends Aluminum Capacitors Rating Up to 600 V for DC Links

    Würth Elektronik Introduces Product Navigator for Passive Components

    Panasonic Passive Components for Reliable Robotic Arms

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

    Conductive Polymer Capacitor Market and Design‑In Guide to 2035

    TDK Releases High Performance 105C DC Link Film Capacitors

    YAGEO Offers Automotive MOVs for EV and AI power

    YAGEO Acquires 100% of Shares of Shibaura Electronics

    Wk 3 Electronics Supply Chain Digest

    Vishay Extends Aluminum Capacitors Rating Up to 600 V for DC Links

    Würth Elektronik Introduces Product Navigator for Passive Components

    Panasonic Passive Components for Reliable Robotic Arms

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

High-Density Hybrid Lithium Ion (Super)PowerCapacitors Deliver Record Density

11.3.2020
Reading Time: 3 mins read
A A

Chinese company Shenzhen Toomen New Energy developed and producing hybrid lithium ion “power capacitors” that can store as much energy as lithium batteries, but with much higher charge/discharge rates, a safe operating temperatures, long lifespans and no risk of explosion.

The highest density cells were getting between 200-260 Wh/kg, every bit the equal of today’s leading commercial lithium batteries but with a higher charge and discharge rate, and no risk of explosion. The power-focused variants were delivering densities of 80 and 100 Wh/kg, and were charging and discharging at 10 and 20C.

RelatedPosts

Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

Conductive Polymer Capacitor Market and Design‑In Guide to 2035

TDK Releases High Performance 105C DC Link Film Capacitors

How do they work?

The power capacitor cells design is sitting halfway between a regular carbon-based supercapacitor and a lithium battery cell. Capacitors charge statically and thus charging and discharging quickly. Batteries use chemical reactions to store and release charge, which makes them slower, gives them a higher energy density and also their tendency to catch fire and explode due to dendrite formation..

The hybrid design uses one electrode similar to a supercapacitor, and the other includes lithium a little like a battery
The hybrid design uses one electrode similar to a supercapacitor, and the other includes lithium a little like a battery; source: Kurt.Energy

Toomen’s powercapacitors have one “activated carbon” electrode made from a variant of graphene, and the other is based on a lithium compound, but compared with lithium-ion, there’s no active lithium in there. There’s no chemical reaction; the charges are stored statically, like a supercapacitor. One electrode has some battery effect, but what you don’t have is a free flow of lithium ions floating in the battery that can form potentially dangerous dendrites.

There are currently two variants, one that prioritizes energy density and the other delivering maximum power rates. The high density cells are currently offering between 200-260 Wh/kg, with rated power densities around 300-500 W/kg. The high power cells are getting 80-100 Wh/kg, with power densities around 1,500 W/kg, peaking at up to 5,000 W/kg.

A new prototype pouch cell under development feature even higher volumetric density more than twice the volumetric density of the highest density cylindrical cells at up to 973 Wh/liter.

In the tradeoff between energy density and power density, Toomen's power capacitors offer some impressive advantages
In the tradeoff between energy density and power density, Toomen’s power capacitors offer some impressive advantages; source: Kurt.Energy

To put those numbers in context, a current model commercial ultracapacitor like the DuraBlue from Maxwell offers a much, much lower energy density of just 8-10 Wh/kg but a sky-high power density around 12,000-14,000 W/kg. A good lithium battery, on the other hand, typically offers 150-250 Wh/kg and power-wise is somewhere around the 250-350 W/kg area. So while it’s clearly a trade-off between power and energy storage, the Toomen power capacitors certainly offer power advantages at the high density end of the scale, and huge density advantages at the high-power end of the scale.

a small Belgian company Altreonic – Kurt.Energy is already making sales into the automotive, energy storage and solar markets, with the key driver being the Toomen cells’ ability to work flawlessly across wide range of temperatures. Munich University is evaluating the power capacitors for a possible role in deep space, where temperatures can reach -200 ºC (-328 ºF) that’s under testing for some time.

Source: Kurt.Energy

Related

Source: New Atlas

Recent Posts

Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

20.1.2026
10

Conductive Polymer Capacitor Market and Design‑In Guide to 2035

20.1.2026
17

TDK Releases High Performance 105C DC Link Film Capacitors

19.1.2026
34

YAGEO Offers Automotive MOVs for EV and AI power

19.1.2026
20

Vishay Extends Aluminum Capacitors Rating Up to 600 V for DC Links

15.1.2026
31

Würth Elektronik Introduces Product Navigator for Passive Components

14.1.2026
68

Panasonic Passive Components for Reliable Robotic Arms

14.1.2026
69

Littelfuse Unveils Ultra-Low-Power TMR Magnetic Switches

13.1.2026
29

DC/DC Push‑Pull Converter vs PSFB Design Guide

12.1.2026
78

Upcoming Events

Jan 21
18:00 - 18:45 CET

To Rogowski or not to Rogowski

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version