Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

    Littelfuse Unveils High-Use Tactile Switches with 2 Million Cycle Lifespan

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

    Littelfuse Unveils High-Use Tactile Switches with 2 Million Cycle Lifespan

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

High Temperature 150°C MLCCs for Automotive Powertrain Applications

14.6.2022
Reading Time: 4 mins read
A A

High-temperature 150°C MLCC ceramic capacitors are required in the powertrain of internal combustion engines, but also in the EV powertrain systems. Samsung Electro-Mechanics released a technical note to address this application field.

Carbon-neutral policies affect all industries. The automotive market will inevitably be impacted as it accelerates towards an electric and eco-friendlier environment. High voltage power converters are essential to EV Powertrain systems as HEV(Hybrid Electric Vehicle)is being developed with a combination of the ICE(Internal Combustion Engine) powertrain.

RelatedPosts

Samsung Electro-Mechanics Releases 150C 0201 1.0uF 4V MLCC in X8M for Automotive SSD

Samsung Releases Worlds First 0603 X6S 22uF 10V MLCC for In-Vehicle Infotainment

Samsung Introduces High-Capacitance 100V MLCC for 48V AI Power Systems

In this article we will discuss why ICE powertrain operates in a high temperature environment and which part of the EV Powertrain’s thermal management is a key design aspect to consider. Samsung Electro-Mechanics X8L and X8G MLCC guarantee high reliability in an extreme temperature environment.

Power Semiconductor Application(SiC) and High Temperature MLCC Needs

Driving range on electric cars is limited to its battery capacity. What changes would be required to increase range? The answer is simple; we need to improve battery capacity and MPGe (km/kW). However, when the battery capacity increases, charging times also increase which makes it inconvenient for drivers and this needs to be resolved.

Car makers continue to develop and improve fast charging systems to reduce this inconvenience for electric vehicle owners. In order to reduce charging times, there are 2 options. First one is to increase the charging voltage and the second one is to increase the capacity (kW) of an electric vehicle charger (OBC).

The power semiconductor types which you select for the circuit are also an important part to enable an efficient power system. SiC MOSFETs are being widely used with Automotive Powertrain DC/DC converter, which help improve power density by increasing frequency and voltage. High power circuit applications such as OBC and Inverters generate heat, ultimately resulting in thermal management issues.

Coolant systems are designed to solve the thermal issue which is originated by the heat generated by the power semiconductors.

This is why high-temperature 150°C MLCC is required not only in the powertrain of internal combustion engines, but also in the EV powertrain systems.

High Temperature Ambient Powertrain and Electrification

There are also unexpected obstacles in the rapid growth of the EV market, i.e. the battery supply cannot keep up with demand. As a result, global OEMs have seen a shortage of minerals used in batteries and therefore prices have increased.

Combustion engine powertrain load

In parallel, demand for ICE and HEV has stayed consistent and co-exist with BEV(Battery Electric Vehicle) market. So far, the technical development trend of ICE powertrain has been focused on improvements such as driving performance, gas mileage and reduced gas emissions. In order to reduce emissions and improve gas mileage, engine load has to be reduced.

The power of the combustion engine drives the transmission to move a vehicle and additional power is distributed by an axillary belt connection. Engine power is additionally distributed to the alternator, oil pump (steering, transmission, etc.), water pump and A/C compressor.

Ultimately, all of these mechanically driven devices reduce gas mileage, to solve this problem these devices are being replaced with electrical alternatives. Additional electrical components such as an ECU and sensors are required and because they are placed in the engine compartment they are exposed to high temperatures. Overall, an ICE powertrain environment runs at a high temperature.

Typically, an exhaust systems radiates heat in excess of 587°C, engine oil and transmission oil are roughly 148°C, adding to the overall high-temperature environment. Taking this into consideration, OEMs and suppliers provide a mission profile, which represents the temperature load of a vehicle. It is essential to select the appropriate components considering the environmental operating temperature where a product is used.

Powertrain temperature loads mission profile

150°C MLCC , Higher MLCC capacitance at high temperature range
Temperature and voltage are factors that affect lifetime of MLCC. 150°C MLCC not only guarantees reliability at high temperature but also provides a higher MLCC Capacitance. List of available products see below.

Capacitance with DC BIAS of X8M and X7S MLCC capacitors
Samsung X8L and X8M 150°C MLCC available range

Related

Source: Samsung Electro-Mechanics

Recent Posts

TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

9.5.2025
3

KYOCERA AVX Releases Compact High-Directivity Couplers

7.5.2025
16

Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

6.5.2025
39

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
48

Tariffs Crush Sales Sentiment in April 2025 ECST Results

5.5.2025
65

Solid State Polymer Multilayer Capacitors For High Temperature Application

2.5.2025
35

Graphene-Based BOSC Bank Of Supercapacitor Cells

2.5.2025
13

Hybrid Energy Storage System for Nanosatellite Applications

1.5.2025
9

COTS-Plus Bulk Tantalum Capacitor for LEO Flight Platforms

29.4.2025
38

High Energy Density Supercapacitors for Space Applications

28.4.2025
36

Upcoming Events

May 14
11:00 - 12:00 CEST

Reliable RIGID.flex PCBs for Critical Applications – Made in Europe

May 14
17:00 - 17:30 CEST

Calculating Foil Winding Losses with AI

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • NTC/PTC Thermistors LTSpice Simulation; Vishay Video Part I

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • RLC Circuit Switching Response Explained

    0 shares
    Share 0 Tweet 0
  • Transformer Optimal Operating Frequency for Phase-Shifted Full-Bridge Converter

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version