• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

How to Design High Energy Power Inductor

29.11.2022

Bourns Expands Automotive High Power Thick Film Chip Resistor Series

31.1.2023

Vishay Releases Automotive Polymer Tantalum Capacitors

30.1.2023

USB PD 3.0 Flyback Transformer Optimisation

30.1.2023

Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition

31.1.2023

DC Blocking Capacitor Selection for Mobile Stereo High-Fidelity Audio

27.1.2023

What is X2Y Bypass Capacitor and What is it Good For?

27.1.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Bourns Expands Automotive High Power Thick Film Chip Resistor Series

    Vishay Releases Automotive Polymer Tantalum Capacitors

    USB PD 3.0 Flyback Transformer Optimisation

    Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition

    DC Blocking Capacitor Selection for Mobile Stereo High-Fidelity Audio

    What is X2Y Bypass Capacitor and What is it Good For?

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Rubycon Releases High Capacitance Hybrid Aluminum Capacitors 

    TDK Releases the Most Compact Safety Motor-Run Film Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Interleaved Multiphase PWM Converters Explained

    A Pitfall of Transformer-Based Isolated DC-DC Converter

    Leakage Models of Multi-Winding Transformer in LLC Converter

    LLC Transformer Design for Power Converters

    Printed Resistors in a High Performance PCB System

    Transformer Characteristics Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Bourns Expands Automotive High Power Thick Film Chip Resistor Series

    Vishay Releases Automotive Polymer Tantalum Capacitors

    USB PD 3.0 Flyback Transformer Optimisation

    Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition

    DC Blocking Capacitor Selection for Mobile Stereo High-Fidelity Audio

    What is X2Y Bypass Capacitor and What is it Good For?

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Rubycon Releases High Capacitance Hybrid Aluminum Capacitors 

    TDK Releases the Most Compact Safety Motor-Run Film Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Interleaved Multiphase PWM Converters Explained

    A Pitfall of Transformer-Based Isolated DC-DC Converter

    Leakage Models of Multi-Winding Transformer in LLC Converter

    LLC Transformer Design for Power Converters

    Printed Resistors in a High Performance PCB System

    Transformer Characteristics Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

How to Design High Energy Power Inductor

29.11.2022
Reading Time: 9 mins read
0 0
0
SHARES
255
VIEWS

This article written by Dr. Chema Molina, Frenetic is continuation of his series of articles about Magnetics Design started by the article How to design an inductor.

In the first article, I designed a DC inductor with Ferrite material.

RelatedPosts

USB PD 3.0 Flyback Transformer Optimisation

1kW Phase Shift Full Bridge Converter Design and Simulation

LLC Transformer Design for Power Converters

As you can see in My table of Inductors in Figure 1., the most common materials for DC inductors are ferrite and powder. In this article, I will focus on a higher energy inductor using Powder material.

The powder manufacturer I use to work with is Magnetics. They also recommend Frenetic as an external tool, however, they provide enough information to help you in the design process at this link (https://www.mag-inc.com/Design/Technical-Documents/Powder-Core-Documents).

Magnetics provides you with an algorithm to design an inductor with their catalog.

Figure 1. Dr. Molina Inductors Design Table
Figure 2. Inductor core selection procedure; source: Magnetics

Case Study How to Design High Energy Power Inductor – 12,5 kW Boost Converter

The specs of the inductor we will use as a case study are based on the WOLFSPEED application note of a 4 phases boost converter of 60 kW, 12,5 kW for each phase.

Figure 3. Case Study Specifications How to Design High Energy Power Inductor – 12,5 kW Boost Converter

Following the Magnetics algorithm

The first step is to calculate the total energy:

With this value, we will choose a magnetic core and material. Each material will offer you a different balance between energy stored and inductance stability. I choose High Flux.

 In the material graph, you have to choose the part which has a higher value than the energy calculated before. As you can see in the picture below, for this case, we are choosing part 58737.

Figure 4. High Flux Toroids Energy Specification Chart

In the same catalog, we can go to check the parameters of this core. On this page, you can find the physical description of the component and the permeability values as well as some support for the winding process regarding the window area.

Figure 4. High Flux Toroids Specification Table

With the material selected, we have to calculate the number of turns for the selected core:

This is the first approximation, now, we have to ensure the inductance required at the DC current, because with this material the inductance decrease with the DC current. For this purpose, we will calculate the H:

Then, we go to the permeability versus DC bias (H) curves for this material and we can find the percent to correct the number of turns – see Figure 5. In this particular case for H= 68.6, the % of permeability is 93%.

Figure 5. Permeability versus DC bias (H) curves

With 93% we can recalculate the number of turns:

If you want to know the value of the inductance for each DC current, you can create a function to calculate each point.  For a boost converter, the most important is to be sure, the minimum inductance won´t increase the output ripple out of your limits.

Now, we have the core and the turns, the algorithm of magnetics proposes we choose the AWG wire to meet a maximum of 5A/mm2 . This is quite simple, with the 27,4 A of DC current, the minimal area of the wire should be:

Following this rule, we will choose between AWG 9 or 10. However, these wires could be very wide and difficult to manage. I would recommend choosing a thinner one and putting some wires in parallel. In my case, I have chosen AWG 12 and 2 parallel wires.

You need to check the window area, to ensure that the number of turns with your specific diameter will fit in the area available. In this case, I’m using 21.9% of the space. The maximum space is relative to a lot of factors but as a rule of thumb, I would say 60% is the limit.

As you can see, in this process we have calculated any losses or talked about proximity due to winding configuration. In the Magnetics document, there is support to calculate the losses, however, from my point of view, it’s complex and it could produce a lot of human errors in the process.

Therefore, the design is completed. I have checked the losses using Frenetic because their proposal is very simple. The total losses are 12,5W

Design using Frenetic

When I started building this product, I reviewed my old process and asked myself, what would help me a lot in the process?

I had three requests:

1.    Automatic inductance calculation

Automatic inductance calculation for each DC bias and all the materials to avoid checking one by one graph and calculating the number of turns in an iterative mode. Therefore, this is our inductance calculator – see Figure 6. Where calculating the inductance for any magnetic core, for any DC inductance is just a matter of seconds. Here, I can calculate the number of turns for each core or most important. Multiple Stacks of cores.

Figure 6.  Calculating the inductance for any magnetic core; Frenetic calculator
Figure 7.  Inductance with current dependance; source: Frenetic

2.    Automatic Curves for each material

The inductance depends on the current, with this curve, I can see the whole behavior of the component – See Figure 7.

3.    Losses & Saturation

With an automatic losses calculation, I can compare different designs, considering losses in the core and the winding. As well as using litz wires, and calculating proximity losses for high-frequency applications with several layers – see Figure 8.

Something to have in mind during a design is the saturation current. To avoid problems with current peaks which could saturate the system, Frenetic provides automatically the saturation current – see Figure 9.

Figure 8. Inductor losses components evaluation; source: Frenetic
Figure 9. Inductor losses and saturation current calculation; source: Frenetic

Source: Frenetic

Related Posts

Inductors

USB PD 3.0 Flyback Transformer Optimisation

30.1.2023
11
Capacitors

What is X2Y Bypass Capacitor and What is it Good For?

27.1.2023
30
Inductors

1kW Phase Shift Full Bridge Converter Design and Simulation

27.1.2023
11

Upcoming Events

Feb 8
11:00 - 12:00 CET

How Does Your PCB Layout Influence the Costs in PCB Manufacturing? Würth Elektronik Webinar

Feb 27
February 27 @ 12:00 - March 2 @ 14:00 EST

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Mar 3
12:00 - 14:00 EST

External Visual Inspection per Mil-Std-883 TM 2009

View Calendar

Popular Posts

  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.