Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    5th PCNS Conference Registration Now Open!

    YAGEO Introduces Automotive Supercapacitors for Stable BMS in EVs

    Capacitance Definition of Non-Linear Voltage Dependent Capacitors

    Littelfuse Releases Harsh Environment Robust Tactile Switches

    Bourns Releases Noise Suppression Common Mode SMD Inductors

    Passive Electronic Components Lead-times Update

    Bourns Releases New SMD Line Filter for Enhanced EMI Suppression

    TDK Expands 3-terminal Automotive SMD Chip Filters to 35V

    Quantic Eulex Presents Ceramic Gap RF Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    5th PCNS Conference Registration Now Open!

    YAGEO Introduces Automotive Supercapacitors for Stable BMS in EVs

    Capacitance Definition of Non-Linear Voltage Dependent Capacitors

    Littelfuse Releases Harsh Environment Robust Tactile Switches

    Bourns Releases Noise Suppression Common Mode SMD Inductors

    Passive Electronic Components Lead-times Update

    Bourns Releases New SMD Line Filter for Enhanced EMI Suppression

    TDK Expands 3-terminal Automotive SMD Chip Filters to 35V

    Quantic Eulex Presents Ceramic Gap RF Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

How to Select Ferrite Cores

9.11.2023
Reading Time: 4 mins read
A A

This article based on Sotiris Zorbas, Power Εlectronics Εngineer Frenetic newsletter will guide you through the process of choosing ferrite cores from various manufacturers and then comparing them to select the ideal core material for a specific application. 

Every Power Electronics Engineer is familiar with a couple or more manufacturers, depending on his location and degree of involvement in the field of Magnetics.

RelatedPosts

How to design a 60W Flyback Transformer

How to Design LLC Transformer

Leakage Inductance Model; Frenetic Webinar Recording

In Europe, for example, EPCOS, TDK and Ferroxcube are very popular names, thanks in part to the accessibility of their services through distributor channels like Digikey, Mouser, Farnell, TME. RS etc.

Why bother with other manufacturers?

Well, that’s an easy question: because of the price per core set and the availability when it comes to mass production. Indeed, there are some other reasons, like the tolerance with dimensions, which might be unacceptable in some designs. But really these are just exceptions.

Figure 1 shows an easily available chart with part numbers of materials from different vendors that are compatible with each other. Keep in mind that this is an indicative graph, and should be treated as such.

Figure 1. Ferrite core manufacturers and materials

How should I make an informed decision about the materials?

Begin by reaching out to the manufacturer that offers the most comprehensive information about their materials. For users with access to Frenetic Online, the Core Optimizer™ tool simplifies the process of comparing these options. Currently, we provide immediate support for Ferroxcube and TDK/EPCOS materials, and you also have the flexibility to manually include other materials as needed.

 Let’s choose the least lossy material and we are done! Right?

Well, if you’re conducting a quick and basic test, then I’m ok with it. However, for a more comprehensive evaluation, the first step should be selecting a material that aligns with the operating frequency of your Converter. And that’s quite an easy task. In Figure 2 you’ll find a list of commonly used materials along with their respective recommended operating frequency ranges.

Figure 2.  Ferroxcube materials – freq. operating ranges

Quickly comes the realization that for a 100kHz Converter most materials are compatible. However, employing a 3F36 core at this frequency is excessive and doesn’t justify the higher cost.

As far as frequency goes, we have given the “OK” to multiple materials. It’s important to note that, while multiple materials may align with the desired frequency range, they won’t necessarily exhibit similar core losses.

Core losses and core temperature

Here is the thing, when designing a Transformer/Inductor, we usually have a core loss target in mind. If you select a material, a constant frequency and fixed flux density swing, the only thing that will affect the core losses will be the core material temperature.

Imagine a Transformer in a DC/DC Converter. You “flip” the power switch and power get transferred to the load. The Magnetic component has some thermal mass, and it will take time to reach its final temperature. 30-120min are usually enough to reach a thermal equilibrium. So, the core is initially cold. Assume an initial ambient temperature of 25°C and a final temperature of 65°C for the core. At first, the core losses will be the maximum and, as the core heats up to its final temperature, the core losses will decrease, reaching a final value.

When trying to compare losses of different materials, a good option is to think about the final temperature of the component. Of course, that’s a rough estimate, but assuming the core is at 60-80°C will get you much closer to the final value than taking into account just ambient temperature.

Table 1 provides insight into the impact of temperature on core losses across different materials. The materials are arranged from the most temperature-sensitive (3C90) to the least sensitive (3C95).

Table 1. Temperature effect on core losses for a PQ5050/100mT core set 

As much as 50% of core loss reduction can be observed between 25°C and 60°C for 3C90, and just 13.8% for 3C95. When looking at the power losses alone, 3C97 is the best performing material in the table.

A better approach

Next time you embark on a design, consider the impact of the target temperature under worst-case scenarios and choose the core losses accordingly. For instance, when working with a 3C94 material, aiming for a final Transformer/Inductor temperature range of 50-70°C allows for choosing approximately 35% more losses than the typical design. This can be achieved by adjusting the number of primary turns to control the operating flux swing. As the component heats up, the effect of temperature will lead to reduced core losses, bringing them closer to the initial target.

Related

Source: Frenetic

Recent Posts

5th PCNS Conference Registration Now Open!

5.6.2025
2

Capacitance Definition of Non-Linear Voltage Dependent Capacitors

5.6.2025
4

Bourns Releases Noise Suppression Common Mode SMD Inductors

4.6.2025
10

Passive Electronic Components Lead-times Update

4.6.2025
17

Coilcraft Unveils 165C High-Temperature Coupled Inductors

3.6.2025
10

Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

29.5.2025
31

Bourns Releases New Current Transformer

29.5.2025
20

Bourns Releases New Shielded Power Inductors for DDR5

29.5.2025
34

Samsung Electro-Mechanics Releases 165C Automotive 0806 Size Power Inductors

21.5.2025
36

Coupled Inductors Circuit Model and Examples of its Applications

21.5.2025
98

Upcoming Events

Jun 24
17:00 - 18:00 CEST

Ultra-Compact and Efficient Switched-Capacitor Power Converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version