Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Resonant Capacitors in High-Power Resonant Circuits

    a Schematic diagram of the BNT-based components constructed based on the entropy-increase strategy. b Digital photograph, cross-sectional SEM image, and EDS mappings of the MLCCs. c Unipolar P-E loops of MLCCs as a function of applied E. d Wrec and η of the MLCCs as a function of applied E. The comparison of (e) Wrec and η, (f) η and UF of the MLCCs with those of other recently reported state-of-the-art MLCCs. source: Nature Communications

    Researchers Proposed Enhanced Energy Storage MLCC

    Littelfuse Releases First Reflow-Compatible Illuminated Tactile Switch

    Vishay Unveils 5W Power Metal Strip Resistor in Compact 1206 Case Size

    Improving SMPS Performance with Thermal Interface Material

    Polymer Tantalum Capacitors Beyond AEC-Q200 LEO Satellites

    Components Thermal and Frequency Challenges in 6G Base Stations

    Development of Nitrogen-Doped Graphene Supercapacitors 

    Layer-by-Layer Fabrication of Thin Polypropylene-based Dielectrics

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Resonant Capacitors in High-Power Resonant Circuits

    a Schematic diagram of the BNT-based components constructed based on the entropy-increase strategy. b Digital photograph, cross-sectional SEM image, and EDS mappings of the MLCCs. c Unipolar P-E loops of MLCCs as a function of applied E. d Wrec and η of the MLCCs as a function of applied E. The comparison of (e) Wrec and η, (f) η and UF of the MLCCs with those of other recently reported state-of-the-art MLCCs. source: Nature Communications

    Researchers Proposed Enhanced Energy Storage MLCC

    Littelfuse Releases First Reflow-Compatible Illuminated Tactile Switch

    Vishay Unveils 5W Power Metal Strip Resistor in Compact 1206 Case Size

    Improving SMPS Performance with Thermal Interface Material

    Polymer Tantalum Capacitors Beyond AEC-Q200 LEO Satellites

    Components Thermal and Frequency Challenges in 6G Base Stations

    Development of Nitrogen-Doped Graphene Supercapacitors 

    Layer-by-Layer Fabrication of Thin Polypropylene-based Dielectrics

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Improving High Voltage Power Modules with new Silicon Snubber Capacitor Technology

5.2.2025
Reading Time: 8 mins read
A A
Full paper download

Murata’s new Silicon Snubber Capacitor technology offers solutions for high voltage power modules, enabling them to fully harness the benefits of wide band gap technologies by overcoming the issues they may face.

This paper was presented by Tom Choisy, junior product manager Murata Integrated Passive Solutions, Caen, France at the 4th PCNS 10-14th September 2023, Sønderborg, Denmark as paper No.1.1.

RelatedPosts

Resonant Capacitors in High-Power Resonant Circuits

Improving SMPS Performance with Thermal Interface Material

Polymer Tantalum Capacitors Beyond AEC-Q200 LEO Satellites

Automotive Industry Trends

The world is moving towards a “Greener” society. The collective drive to achieve zero-emissions is already affecting the way that energy is produced and consumed. As of today, more than 70 countries have set net-zero targets, covering 76% of global emissions. This brings new market perspectives and new technological trends.

Wide-Bandgap technologies and SiC major adoption leads the way to new opportunities and new requirements. According to Yole study “Power SiC 2022, Market and Technology Report” the acceleration of EV/HEV remains the primary market driver for SiC, especially in the main inverter : “The total power electronic system market, made up of main inverters, DC/DC, and OBC, will grow to ~$26B by 2027, with the main inverter taking more than 60% market share by 2027.” [1]

  1. Market problems to be solved:

With the era of Wide-Bandgap devices in power electronics, the new challenges already on the table will be more pronounced such as:

  1. Higher frequencies
  2. Higher power densities
  3. Higher voltage levels
  4. Better efficiency (lower losses)
  5. Lower inductance
  6. Smaller size
  7. Higher reliability
  8. Higher temperature stability
  9. Easy module integration
  1. Consequences for capacitor requirements:

To meet the new requirements of the automotive power electronics industry, it is essential to develop new capacitor solutions offering:

  1. High voltage performance
  2. High reliability
  3. High temperature stability
  4. High frequency
  5. Ultra-low parasitic inductance
  6. Very small form factor for very close implementation
  7. Compatibility with advanced packaging.

Advanced components to Improve Power Module Efficiency

The automotive industry is moving towards high voltage (800V) electric vehicles, creating a demand for advanced components meeting the requirements listed above. These requirements are driven by the need to maximize overall efficiency of the car and to increase the lifetime of SiC/GaN transistors.

High frequency and high-density components are essential for efficient power conversion, enabling effective energy transfer between the battery and the motor. They facilitate rapid switching, reducing energy losses and improving overall system efficiency. High voltage capabilities are needed to ensure optimal performance. These components need to be highly reliable since they operate in harsh environments but also as small as possible because of the limited space.

New Silicon RC Snubber technology to Improve Power Module Efficiency

Murata Silicon Capacitors Technology

Murata silicon capacitor technology based on 3D structure brings high performance and miniaturisation together thanks to unique structure and stable SiO2 dielectric features.

Silicon Snubber Capacitors

Snubbers are passive components used to address issues linked to rapid switching of power transistors, such as ringing effect. The new innovative technology developed by Murata integrates a resistor and a capacitor inside a single silicon die that reduces the ringing effect caused by the high speed switching of power transistors.

To achieve higher power module efficiency, snubbers need to be placed as close as possible to SiC/GaN transistors. Placing a Silicon Snubber as close as possible to a SiC/GaN will minimize parasitic elements like inductance, which can negatively impact high speed switching performance. By reducing these parasitic effects, Silicon RC Snubbers enable faster and controlled switching, thus improving power conversion efficiency.

Example: R+C Passives inside one die of 3.5 x 3.5mm, with a BV of 1500V, made to fit inside High Voltage Power Modules (SiC 1200V).

Key Features :

  • Ultra low ESL (< 20 pH)
  • 3D structure allows large capacitance value (high density)
  • Low leakage current & Low Loss factor
  • High temperature reliability (Up to 200°C)

Key Benefits :

  • Ringing suppression
  • Maximizes inverter efficiency
  • Can be placed near SiC/GaN transistors
  • Same assembly method as power transistors
  • Reduces EMC interferences

By placing the Si RC Snubber as close as possible to the power transistors, you can limit the ringing effect and fully harness the advantages of SiC as shown in figure below:

Outcomes:

  • Ringing suppression = Higher Inverter Efficiency
  • Potential downsizing of the cooling device
  • Improved battery autonomy & potential downsizing
  • Extended lifetime of SiC transistors
  • EMC reduction = downsizing / lower price for EMC filters
  • No need for high cost & complex assembly (e.g. double sintering) to gain
    inverter efficiency

SUMMARY AND CONCLUSIONS

The integration of Silicon RC Snubbers as close as possible to SiC/GaN power transistors offers several benefits that have a major impact on the overall performance and efficiency of EVs. By eliminating the ringing effect, RC snubbers increase switching speeds, thus improving the overall efficiency of the module and reducing the need for cooling systems. This reduction in cooling devices will contribute to weight and space savings inside the car but also enhances battery autonomy and driving range.

The compatibility of our Silicon RC Snubber technology with the assembly techniques used for SiC/GaN transistors (wirebonding on the top and sintering on the bottom) will eliminate the need for complex assembly processes. This compatibility will also simplify the integration of the component into existing manufacturing lines, allowing manufacturers to use their expertise while benefiting from the increased efficiency provided by the RC Snubber.

By overcoming the issues that can be faced by Wide-Bandgap components, the Silicon RC Snubber enables to fully harness the benefits of these technologies.

REFERENCES

[1] Yole Power Electronics for Automotive – Focus Passenger and Light Commercial Vehicles | Report 2022

Related

Source: EPCI

Recent Posts

Resonant Capacitors in High-Power Resonant Circuits

1.10.2025
3
a Schematic diagram of the BNT-based components constructed based on the entropy-increase strategy. b Digital photograph, cross-sectional SEM image, and EDS mappings of the MLCCs. c Unipolar P-E loops of MLCCs as a function of applied E. d Wrec and η of the MLCCs as a function of applied E. The comparison of (e) Wrec and η, (f) η and UF of the MLCCs with those of other recently reported state-of-the-art MLCCs. source: Nature Communications

Researchers Proposed Enhanced Energy Storage MLCC

1.10.2025
2

Littelfuse Releases First Reflow-Compatible Illuminated Tactile Switch

1.10.2025
1

Vishay Unveils 5W Power Metal Strip Resistor in Compact 1206 Case Size

1.10.2025
2

Improving SMPS Performance with Thermal Interface Material

30.9.2025
5

Polymer Tantalum Capacitors Beyond AEC-Q200 LEO Satellites

30.9.2025
16

Components Thermal and Frequency Challenges in 6G Base Stations

30.9.2025
8

Development of Nitrogen-Doped Graphene Supercapacitors 

30.9.2025
6

Layer-by-Layer Fabrication of Thin Polypropylene-based Dielectrics

30.9.2025
18

Flaked Tantalum Powders: High Capacitance Powders for High Reliable Tantalum Capacitors

29.9.2025
11

Upcoming Events

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 8
11:00 - 12:00 CEST

PCB Online Shop – simply “Made in Germany” by Würth Elektronik

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version