Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samsung Releases Automotive Molded 2220 1kV C0G MLCC

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    VINATech Offers Smallest 100µF Al-Hybrid Capacitor

    Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

    Power Inductors Future: Minimal Losses and Compact Designs

    Bourns Unveils Automotive 3 Watt Gate Driver Transformer

    Murata Opens EMC Test Lab in Nuremberg to Enhance Automotive Support

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Molex Acquires Smiths Interconnect

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samsung Releases Automotive Molded 2220 1kV C0G MLCC

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    VINATech Offers Smallest 100µF Al-Hybrid Capacitor

    Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

    Power Inductors Future: Minimal Losses and Compact Designs

    Bourns Unveils Automotive 3 Watt Gate Driver Transformer

    Murata Opens EMC Test Lab in Nuremberg to Enhance Automotive Support

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Molex Acquires Smiths Interconnect

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Indian Institute of Technology Fabricates Wearable Supercapacitor

20.5.2019
Reading Time: 3 mins read
A A

Source: The Hindu news

Researchers at the Indian Institute of Technology (IIT) Bombay have fabricated a wearable supercapacitor that can store and deliver large amount of electrical energy, exceeding other similar devices. The wearable energy storage device can be stitched on to any fabric and can deliver power ranging from microwatt to milliwatt. The energy stored in the device can power GPS location-based transmitters or a 1.8 volt LED.

RelatedPosts

Samsung Releases Automotive Molded 2220 1kV C0G MLCC

How to Select Ferrite Bead for Filtering in Buck Boost Converter

VINATech Offers Smallest 100µF Al-Hybrid Capacitor

“The idea is when the supercapacitor is integrated with a piezoelectric energy generator then it will become completely self-sustaining. And when stitched to the fabric, the supercapacitor can be used for powering GPS location-based devices or a LED lamp or even charge small electronic devices,” says Prof. Chandramouli Subramaniam. He is from the institute’s Department of Chemistry and the lead author of a paper published in the journal ACS Applied Materials & Interfaces.

Novel electrode
The electrode of the supercapacitor was fabricated by uniformly coating cotton yarn with carbon nanotubes (CNTs). The coating is done by dipping the yarn into carbon nanotube ink, where the CNTs are dispersed in water using a surfactant (detergent).

The coating converts the electrical insulating yarn into a metallic conductor thereby behaving like an electrode. “The yarns coated with carbon nanotubes exhibited a finite electrical conductivity,” says Prof. Subramaniam.

As the supercapacitor is targeting wearable and portable electronics, liquid electrolytes are out of the reckoning. So the researchers prepared a solid electrolyte film just 150 micrometre thick by mixing poly vinyl alcohol and potassium hydroxide in appropriate proportions.

“We stitched the solid electrolyte with CNT-coated yarn both vertically and horizontally. Capacitors were formed wherever the CNT wires criss-crossed each other and sandwiched the electrolyte,” Prof. Subramaniam says. “By increasing the number of stitches, and therefore, the number of capacitors, the amount of energy stored can be increased.” A 1×1 sqcm electrolyte will have at least a few hundred capacitors.

The researchers laminated the electrolyte film containing CNT wire electrodes to protect it. The laminated capacitors retained flexibility and sturdiness without compromising on performance and power.

The ions in a solid matrix are typically trapped and hinder energy storage capabilities. To overcome this, the polymer matrix was controllably hydrated with water vapour to enhance the mobility of the ions. Similarly, to increase the interaction between the CNT wire and electrolyte, the wires were treated with acid. Acid treatment improved the interface between the CNT wire and the electrolyte. “The combination of mobile ions in the electrolyte and better interface between the wire and the electrolyte increases the capacity to store electrical energy,” he says.

Application
“Energy stored in just nine capacitors can power a LED of 1.8 volts,” says Mihir Kumar Jha from the Department of Chemistry at IIT Bombay and the first author of the paper. “Depending on the application, we can increase the number of capacitors made in a small area and integrate to increase the total amount of energy stored in the system.”

High performance
The laminated supercapacitor demonstrated unchanged performance even when subjected to extreme and harsh mechanical testing — striking repeatedly with a hammer, complete flexing, bending and rolling, and washing in a laundry machine in the presence of hot water, detergents and high spinning action. “This is possibly the first demonstration of a wearable device that can withstand rigorous washing conditions,” says Jha. Moreover, being lightweight, it does not hinder user movement in any way.

featured image: We can increase the number of capacitors made in a small area and increase the total amount of energy stored, says Mihir Kumar Jha.  Image Source: IIT Bombay

Related

Recent Posts

Samsung Releases Automotive Molded 2220 1kV C0G MLCC

23.10.2025
13

VINATech Offers Smallest 100µF Al-Hybrid Capacitor

23.10.2025
27

Murata Integrates Component Models into Cadence EDA Tools

21.10.2025
38

September 2025 ECIA US Components Sales Sentiment Continues in Optimism

20.10.2025
19

High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

15.10.2025
26

KYOCERA AVX Expands Stacked MLCC Capacitors Offering

14.10.2025
44

KYOCERA Releases Shielded Board-to-Board Connectors for Reliable EMI Protection

13.10.2025
25

Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

10.10.2025
79

Enhancing Energy Density in Nanocomposite Dielectric Capacitors

9.10.2025
41

Advances in the Environmental Performance of Polymer Capacitors

8.10.2025
68

Upcoming Events

Oct 28
8:00 - 15:00 CET

Power Up Your Design: SN6507 and the Ready-to-Use Development Kit

Oct 30
11:00 - 12:00 CET

Space Ceramic Capacitors with Flexible Testing

Nov 4
10:00 - 11:00 PST

Design and Stability Analysis of GaN Power Amplifiers using Advanced Simulation Tools

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version