Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Smolteks CNF MIM Capacitor Break 1 µF/mm²

    Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

    Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

    2025 Thick and Thin Film Resistor Networks Environment Overview

    Role of High-Q Ceramic Filters to Overcome GNSS Jamming

    Optimization of IoT for GEO NB-NTN Hybrid Connectivity

    TDK Releases Automotive Power-Over-Coax Inductor for Filters

    Advanced Conversion Announces Mass Production of 200C Film Capacitors

    VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Smolteks CNF MIM Capacitor Break 1 µF/mm²

    Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

    Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

    2025 Thick and Thin Film Resistor Networks Environment Overview

    Role of High-Q Ceramic Filters to Overcome GNSS Jamming

    Optimization of IoT for GEO NB-NTN Hybrid Connectivity

    TDK Releases Automotive Power-Over-Coax Inductor for Filters

    Advanced Conversion Announces Mass Production of 200C Film Capacitors

    VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Latest Circuit Protection Technologies Overview

11.1.2023
Reading Time: 3 mins read
A A

This article provides quick overview on new circuit protection technologies that have evolved in the last few years. Written by Pat Denton, published by TTI Market Eye.

The Hybrid MOV-GDT

Metal oxide varistors (MOVs) are a ceramic protection device that have been around for years. Gas discharge tubes (GDT) have also been around for a while. One of the drawbacks of the MOV is that it wears out over time because it is constantly biased in the circuit. New design innovations have created significant miniaturization of GDTs in low-profile packages. These packages have allowed engineers to marry the GDT and MOV together into one device. The GDT isolates the MOV from the circuit bias, thus extending the life of the MOV and making the overall end product longer lasting.

RelatedPosts

Smolteks CNF MIM Capacitor Break 1 µF/mm²

Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

Extremely Low Capacitance Diodes

Semiconductor devices inherently exhibit capacitance which can be detrimental to high-speed data signals. As data lines moved from dial-up modems to much faster protocols, protection diodes were initially ignored because their relatively high capacitance degraded signal integrity. Advances in semiconductor chip design allowed manufacturers to shrink the chips or die while maintaining surge capability, which lowered the capacitance. Additionally, manufacturers found that if they put two die in series in the same package, capacitance would effectively be halved. Combining the two techniques allowed designers to lower capacitance of diodes and diode array to acceptable levels for high-speed data line protection.

High-Speed MOSFET-Based Protection Devices

While MOSFETs are not typically used for circuit protection, silicon design engineers have discovered ways to do just that. Modern day ICs with millions of tiny internal circuits are extremely susceptible to variances in voltage levels which can damage the device. New devices based on MOSFET technology operate in nanoseconds and redirect any over-voltage or overcurrent events away from the IC.  Additionally, the turn-on window of the devices is much more precise than other technologies, affording superior protection of sensitive ICs.

eFuses

Wire-in-air fuses have been around since the 1800s. With advances in design and production techniques, fuses are still a staple of protection in electronic design. Unlike conventional fuses, the silicon-based eFuse IC has a high-speed current interruption function that turns the circuit off when excessive current flows. In addition, the eFuse is resettable and is not destroyed by a single overcurrent event. It can also incorporate various protection functions such as overvoltage protection.

High-Speed Fuses and Electric Vehicle Fuses

Because these fuses protect power semiconductors, they are sometimes referred to as semiconductor fuses. High-speed fuses provide protection for semiconductor devices such as diodes, SCRs and IGBTs as well as providing protection in harsh DC traction applications. High-speed fuses are available as high as 4,000Vdc and 10,000A. High-speed fuses don’t have intentional time-delay features that other fuses may exhibit. Typical equipment using power semiconductor devices includes inverters, rectifiers, electric vehicle battery management systems, locomotive traction drives, industrial motor drives, battery chargers and more. Electric vehicle high-speed fuses can provide circuit protection solutions for battery and drive inverter protection as well as DC charging and short-circuit back-up protection.

These are just a few innovations introduced over the last few years. Both necessity and brilliant minds will continue to add to new circuit protection products in the future.

Featured image: EV Fuses; source: Bourns

Related

Source: TTI Market Eye

Recent Posts

Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

19.6.2025
8

Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

19.6.2025
17

TDK Releases Automotive Power-Over-Coax Inductor for Filters

18.6.2025
9

Advanced Conversion Announces Mass Production of 200C Film Capacitors

18.6.2025
17

VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

17.6.2025
14

Bourns Introduces New Automotive Grade BMS Signal Transformer

17.6.2025
9

YAGEO Releases High-Sensitivity Residual Current Detectors for Safer EV Charging

17.6.2025
15

YAGEO Releases High Isolation Transformer for 1500VDC Applications

12.6.2025
24

Bourns Releases 1500VDC Power Fuse for Photovoltaic Applications

12.6.2025
10

Murata Releases Worlds First Molded Thermistor with Wire-Bonding

12.6.2025
19

Upcoming Events

Jun 24
16:00 - 17:00 CEST

Limitations of PSFB converters and improvements by a variable inductor ft. Sam Ben-Yaakov

Jun 24
17:00 - 18:00 CEST

Ultra-Compact and Efficient Switched-Capacitor Power Converters

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version