Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Stackpole Releases Low VCR High Voltage Chip Resistors

    June 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Wk 25 Electronics Supply Chain Digest

    Smolteks CNF MIM Capacitor Break 1 µF/mm²

    Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

    Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

    2025 Thick and Thin Film Resistor Networks Environment Overview

    Role of High-Q Ceramic Filters to Overcome GNSS Jamming

    Optimization of IoT for GEO NB-NTN Hybrid Connectivity

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Stackpole Releases Low VCR High Voltage Chip Resistors

    June 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Wk 25 Electronics Supply Chain Digest

    Smolteks CNF MIM Capacitor Break 1 µF/mm²

    Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

    Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

    2025 Thick and Thin Film Resistor Networks Environment Overview

    Role of High-Q Ceramic Filters to Overcome GNSS Jamming

    Optimization of IoT for GEO NB-NTN Hybrid Connectivity

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Maxwell Technologies Launches New 3-Volt Supercapacitors for Full Range of Market Applications

11.1.2019
Reading Time: 2 mins read
A A

Source: Maxwell Technologies news

SAN DIEGO, Jan. 9, 2019 /PRNewswire/ — Maxwell Technologies, Inc. (Nasdaq: MXWL), the leading developer and manufacturer of energy storage and power delivery solutions, today announced the launch of a new full-featured 3.0-volt (3.0V) product platform.

RelatedPosts

Stackpole Releases Low VCR High Voltage Chip Resistors

June 2025 Interconnect, Passives and Electromechanical Components Market Insights

Wk 25 Electronics Supply Chain Digest

With the introduction of these next generation ultracapacitors, users have the ability to increase energy and power in the same form factor as the 2.7-volt product line and can significantly cost-optimize their system designs by using fewer ultracapacitor cells or modules. Alternatively, users can upgrade to a 3.0V solution to extend the expected life of their products. The 3.0V platform is designed for single-cell applications as well as multi-cell complex module systems.

“Maxwell Technologies continues to expand its product roadmap with the introduction of the highest energy cells to date,” said Thibault Kassir, Maxwell Technologies vice president and general manager, energy storage. “By continually listening to the needs of our customers, our 3.0V family of products was developed to provide the flexibility to address higher-voltage or cost-sensitive applications. We designed these innovative products with the expertise gained by the collaboration of our technology centers across the world. Maxwell ensures the highest quality and affordability, while setting the new industry standard for a 3.0V product line.”

Designed from the ground up, Maxwell’s new 3.0V platform addresses energy storage requirements driven by trends in renewable energy, industrial electrification and smart grid. The growth of renewable energy sources has increased wind turbine installations, which require more energy storage to ensure pitch control during critical moments, such as when the turbine blades must be brought to a standstill. E-commerce has sparked the need for ultracapacitors in warehouses to provide Automated Guided Vehicles (AGVs) with high power and fast charging capabilities. The demand for enhanced connectivity in smart meters for gas, water and electric utilities requires high power functionality to improve accurate meter readings and response time to customers. Whether used alone, integrated into a module assembly or in a hybrid configuration with fuel cells, Maxwell’s 3.0V platform of products can help reduce the overall cost and weight of the system while improving return on investment for customers.

3.0V XP™ Small Cell Ultracapacitors
The 3.0V platform includes small cells used in actuators, emergency lighting, telematics, automotive, backup systems, smart meter and robotic applications. The 3.0V small cells are an expansion of Maxwell’s XP brand, giving the same performance as the Gen 1 XP line but with a more user-friendly design. Maxwell’s new 3.0V solutions provide a cost-efficient, high performance and long-life platform. The 3.0V, 3-farad (3F), 5F, 10F, 25F and 50F products are sampling now, with additional small, medium and large cells coming out in the near future to further expand the 3.0V platform.

3.0V 3400-Farad (3400F) Ultracapacitor Cell with DuraBlue® Advanced Shock and Vibration Technology
The 3.0V cell is the next evolution of the 3400F family, following the 2.7V and 2.85V cells, typically used in industrial and UPS applications, as well as in the wind and heavy transportation industries. The 3.0V 3400F cell has 40% higher power than Maxwell’s 2.7V 3000F cell, in an industry-standard 60-mm cylindrical form factor, as well as a 54% increase in stored energy. The 3.0V cell design uses Maxwell’s proprietary DuraBlue® Advanced Shock and Vibration Technology to provide three times the vibrational resistance and four times the shock immunity of the prior generation ultracapacitor cells. Customers can seamlessly upgrade to the 3.0V cell from any of the current 3000F or 3400F products.

Related

Recent Posts

Stackpole Releases Low VCR High Voltage Chip Resistors

23.6.2025
1

Smolteks CNF MIM Capacitor Break 1 µF/mm²

19.6.2025
28

Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

19.6.2025
11

TDK Releases Automotive Power-Over-Coax Inductor for Filters

18.6.2025
11

Advanced Conversion Announces Mass Production of 200C Film Capacitors

18.6.2025
19

VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

17.6.2025
20

Chinas MLCC Makers Reach 10% Market Share

16.6.2025
73

YAGEO Releases High Isolation Transformer for 1500VDC Applications

12.6.2025
25

Bourns Releases 1500VDC Power Fuse for Photovoltaic Applications

12.6.2025
10

Vishay Extends Axial Wirewound Resistors with WSZ Lead Form

12.6.2025
13

Upcoming Events

Jun 24
16:00 - 17:00 CEST

Limitations of PSFB converters and improvements by a variable inductor ft. Sam Ben-Yaakov

Jun 24
17:00 - 18:00 CEST

Ultra-Compact and Efficient Switched-Capacitor Power Converters

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version