Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samsung Releases Automotive Molded 2220 1kV C0G MLCC

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    VINATech Offers Smallest 100µF Al-Hybrid Capacitor

    Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

    Power Inductors Future: Minimal Losses and Compact Designs

    Bourns Unveils Automotive 3 Watt Gate Driver Transformer

    Murata Opens EMC Test Lab in Nuremberg to Enhance Automotive Support

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Molex Acquires Smiths Interconnect

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samsung Releases Automotive Molded 2220 1kV C0G MLCC

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    VINATech Offers Smallest 100µF Al-Hybrid Capacitor

    Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

    Power Inductors Future: Minimal Losses and Compact Designs

    Bourns Unveils Automotive 3 Watt Gate Driver Transformer

    Murata Opens EMC Test Lab in Nuremberg to Enhance Automotive Support

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Molex Acquires Smiths Interconnect

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Maxwell Technologies Launches New 3-Volt Supercapacitors for Full Range of Market Applications

11.1.2019
Reading Time: 2 mins read
A A

Source: Maxwell Technologies news

SAN DIEGO, Jan. 9, 2019 /PRNewswire/ — Maxwell Technologies, Inc. (Nasdaq: MXWL), the leading developer and manufacturer of energy storage and power delivery solutions, today announced the launch of a new full-featured 3.0-volt (3.0V) product platform.

RelatedPosts

Samsung Releases Automotive Molded 2220 1kV C0G MLCC

How to Select Ferrite Bead for Filtering in Buck Boost Converter

VINATech Offers Smallest 100µF Al-Hybrid Capacitor

With the introduction of these next generation ultracapacitors, users have the ability to increase energy and power in the same form factor as the 2.7-volt product line and can significantly cost-optimize their system designs by using fewer ultracapacitor cells or modules. Alternatively, users can upgrade to a 3.0V solution to extend the expected life of their products. The 3.0V platform is designed for single-cell applications as well as multi-cell complex module systems.

“Maxwell Technologies continues to expand its product roadmap with the introduction of the highest energy cells to date,” said Thibault Kassir, Maxwell Technologies vice president and general manager, energy storage. “By continually listening to the needs of our customers, our 3.0V family of products was developed to provide the flexibility to address higher-voltage or cost-sensitive applications. We designed these innovative products with the expertise gained by the collaboration of our technology centers across the world. Maxwell ensures the highest quality and affordability, while setting the new industry standard for a 3.0V product line.”

Designed from the ground up, Maxwell’s new 3.0V platform addresses energy storage requirements driven by trends in renewable energy, industrial electrification and smart grid. The growth of renewable energy sources has increased wind turbine installations, which require more energy storage to ensure pitch control during critical moments, such as when the turbine blades must be brought to a standstill. E-commerce has sparked the need for ultracapacitors in warehouses to provide Automated Guided Vehicles (AGVs) with high power and fast charging capabilities. The demand for enhanced connectivity in smart meters for gas, water and electric utilities requires high power functionality to improve accurate meter readings and response time to customers. Whether used alone, integrated into a module assembly or in a hybrid configuration with fuel cells, Maxwell’s 3.0V platform of products can help reduce the overall cost and weight of the system while improving return on investment for customers.

3.0V XP™ Small Cell Ultracapacitors
The 3.0V platform includes small cells used in actuators, emergency lighting, telematics, automotive, backup systems, smart meter and robotic applications. The 3.0V small cells are an expansion of Maxwell’s XP brand, giving the same performance as the Gen 1 XP line but with a more user-friendly design. Maxwell’s new 3.0V solutions provide a cost-efficient, high performance and long-life platform. The 3.0V, 3-farad (3F), 5F, 10F, 25F and 50F products are sampling now, with additional small, medium and large cells coming out in the near future to further expand the 3.0V platform.

3.0V 3400-Farad (3400F) Ultracapacitor Cell with DuraBlue® Advanced Shock and Vibration Technology
The 3.0V cell is the next evolution of the 3400F family, following the 2.7V and 2.85V cells, typically used in industrial and UPS applications, as well as in the wind and heavy transportation industries. The 3.0V 3400F cell has 40% higher power than Maxwell’s 2.7V 3000F cell, in an industry-standard 60-mm cylindrical form factor, as well as a 54% increase in stored energy. The 3.0V cell design uses Maxwell’s proprietary DuraBlue® Advanced Shock and Vibration Technology to provide three times the vibrational resistance and four times the shock immunity of the prior generation ultracapacitor cells. Customers can seamlessly upgrade to the 3.0V cell from any of the current 3000F or 3400F products.

Related

Recent Posts

Samsung Releases Automotive Molded 2220 1kV C0G MLCC

23.10.2025
9

VINATech Offers Smallest 100µF Al-Hybrid Capacitor

23.10.2025
26

Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

23.10.2025
3

Bourns Unveils Automotive 3 Watt Gate Driver Transformer

22.10.2025
5

Murata Integrates Component Models into Cadence EDA Tools

21.10.2025
32

Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

20.10.2025
10

Bourns Release Automotive 4-Terminal Shunt Resistors

17.10.2025
20

Bourns Releases High Inductance Common Mode Choke

16.10.2025
21

Vishay Releases Automotive TO-220 Case 50W Thick Film Power Resistor

16.10.2025
14

High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

15.10.2025
26

Upcoming Events

Oct 28
8:00 - 15:00 CET

Power Up Your Design: SN6507 and the Ready-to-Use Development Kit

Oct 30
11:00 - 12:00 CET

Space Ceramic Capacitors with Flexible Testing

Nov 4
10:00 - 11:00 PST

Design and Stability Analysis of GaN Power Amplifiers using Advanced Simulation Tools

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version