Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Unveils COMPLETE Library v25.7 for Cadence AWR Design Environment

    YAGEO Expands Aluminum Capacitors with 80V Ratings for 48V Automotive and Industrial Systems

    Knowles Doubles Capacitance of its Class I Ceramic C0G Capacitors

    Wk 47 Electronics Supply Chain Digest

    TDK Combines Varistor and Gas Discharge Tube into One Component

    Vishay Extends Automotive TO-220 Thick Film Power Resistors with 30W Option

    Transient Suppression Guide

    Rubycon Releases High Capacitance Radial Lead Aluminum Electrolytic Capacitors

    October 2025 ECIA US Components Sales Sentiment Remains Strong but Weakens in November

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Unveils COMPLETE Library v25.7 for Cadence AWR Design Environment

    YAGEO Expands Aluminum Capacitors with 80V Ratings for 48V Automotive and Industrial Systems

    Knowles Doubles Capacitance of its Class I Ceramic C0G Capacitors

    Wk 47 Electronics Supply Chain Digest

    TDK Combines Varistor and Gas Discharge Tube into One Component

    Vishay Extends Automotive TO-220 Thick Film Power Resistors with 30W Option

    Transient Suppression Guide

    Rubycon Releases High Capacitance Radial Lead Aluminum Electrolytic Capacitors

    October 2025 ECIA US Components Sales Sentiment Remains Strong but Weakens in November

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Memristors Support Brain-Like Computing System

11.4.2022
Reading Time: 2 mins read
A A

In a recent paper published in Advanced Intelligent Systems, Yuchao Yang and colleagues at Peking University have shown that human-like memory structures can be constructed using memristors, which is acknowledged as the fourth passive circuit element besides resistors, capacitors and inductors.

A long-standing dream in the semiconductor industry is to construct a brain-like computing system on silicon chips. Recently, neuromorphic computing has been proposed as a means of emulating the working modes of neurons and synapses on hardware, and has been hailed as the next generation computing paradigm for the era of big data and artificial intelligence.

RelatedPosts

Researchers Demonstrated Quantum Memristor as a Link between AI and Quantum Computing

Graphene-based Memristors Show Promise for Brain-Based Computing

Nanometers-thin Niobium Oxide (NbO2) Memristor Can Bring Breakthrough to Neuromorphic AI Hardware Designs

However, a key challenge for building a neuromorphic computing system is recreating content-based memory structures found in the brain, which are dramatically different from the address-based storage in classical computers.

Due to their internal working dynamics, memristors can change their resistance values in response to external electrical stimulation, bearing similarities with biological synapses. In their study, the team have purposed and simulated a memristor-based physical system using discrete attractor networks capable of implementing associative memory, a typical content-based memory phenomenon that can remember the relationship between seemingly unrelated items or recall the whole information precisely from damaged information.

The desired information is encoded at attractors of the network, and through introducing the competition and cooperation among neurons in an online learning method called Oja Rule, the storage capacity of the system can be increased by 10 times compared to previous methods and has better robustness and tolerance for device imperfections.

By extending the discrete attractor neural network to continuous attractor neural network (CANN), working memory based on memristors was made possible for the first time, which demonstrates the potential of dynamically storing and tracking external stimuli. The researchers also systematically investigated the influence of device characteristics on network performance and found that noise from different sources can have different impacts the ability of CANN in maintaining dynamic information. While read noise shifts the center of network activity, write noise can make the center of network activity split.

This work represents a significant advance in memristor-based neuromorphic systems that can approach biologically plausible neural networks and could pave the way for truly intelligent hardware systems. Looking into the future, the team hopes to combine the continuous attractor neural networks with existing supervised learning systems on physical memristor crossbars.

featured image: A physical system based on memristors is used to realize associative memory based on discrete attractor networks, enabling content based storage. By extending it to continuous attractor neural networks, working memory is realized based on memristors. The write and read noises in memristor arrays are found to have different impacts on the ability of network in maintaining dynamic information. Source: Y. Wang, et al. Advanced Intelligent Systems, 2020

Research article available at: Y. Wang, et al. Advanced Intelligent Systems, 2020, doi.org/10.1002/aisy.202000001

Related

Source: Willey Online Library

Recent Posts

Würth Elektronik Expands its MagI³C-VDMM MicroModules

5.11.2025
27

Lightweight Model for MLCC Appearance Defect Detection

3.11.2025
34

September 2025 ECIA US Components Sales Sentiment Continues in Optimism

20.10.2025
39

High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

15.10.2025
50

KYOCERA Releases Shielded Board-to-Board Connectors for Reliable EMI Protection

13.10.2025
32

Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

10.10.2025
128

Enhancing Energy Density in Nanocomposite Dielectric Capacitors

9.10.2025
49

Stackpole Offers High Voltage Plate Resistors up to 40KV

2.10.2025
43
a Schematic diagram of the BNT-based components constructed based on the entropy-increase strategy. b Digital photograph, cross-sectional SEM image, and EDS mappings of the MLCCs. c Unipolar P-E loops of MLCCs as a function of applied E. d Wrec and η of the MLCCs as a function of applied E. The comparison of (e) Wrec and η, (f) η and UF of the MLCCs with those of other recently reported state-of-the-art MLCCs. source: Nature Communications

Researchers Proposed Enhanced Energy Storage MLCC

1.10.2025
38

Upcoming Events

Dec 2
December 2 @ 12:00 - December 4 @ 14:15 CET

Microwave Packaging Technology

Dec 9
December 9 @ 12:00 - December 11 @ 14:15 EST

Space and Military Standards for Hybrids and RF Microwave Modules

Dec 10
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version