Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Würth Elektronik Releases Long Life SMT nano and microSD Card Connectors

    Glass Core Technology Breakthrough Potential for High-Speed Interconnects

    YAGEO Releases High Isolation Transformer for 1500VDC Applications

    Bourns Releases 1500VDC Power Fuse for Photovoltaic Applications

    Murata Releases Worlds First Molded Thermistor with Wire-Bonding

    Vishay Extends Axial Wirewound Resistors with WSZ Lead Form

    Smoltek CNF-MIM Capacitor Commercialization Update

    Bourns Unveils Automotive Thick Film on Steel

    TT Electronics Releases Failsafe and High Surge SMD MELF Resistors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Würth Elektronik Releases Long Life SMT nano and microSD Card Connectors

    Glass Core Technology Breakthrough Potential for High-Speed Interconnects

    YAGEO Releases High Isolation Transformer for 1500VDC Applications

    Bourns Releases 1500VDC Power Fuse for Photovoltaic Applications

    Murata Releases Worlds First Molded Thermistor with Wire-Bonding

    Vishay Extends Axial Wirewound Resistors with WSZ Lead Form

    Smoltek CNF-MIM Capacitor Commercialization Update

    Bourns Unveils Automotive Thick Film on Steel

    TT Electronics Releases Failsafe and High Surge SMD MELF Resistors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

More Compact Multiple Output Power Supply with Just One Inductor

18.1.2023
Reading Time: 4 mins read
A A

Is it possible to design compact power supply with just one inductor? Check this article written by Frederik Dostal, Analog Devices power management expert “When Just One Inductor is Enough to Design a More Compact Power Supply“.

In nearly every electronic circuit today, several different supply voltages are needed. A suitable power management architecture must be designed for the different required voltage rails.

RelatedPosts

Würth Elektronik Releases Long Life SMT nano and microSD Card Connectors

Glass Core Technology Breakthrough Potential for High-Speed Interconnects

YAGEO Releases High Isolation Transformer for 1500VDC Applications

Typically, multiple voltage converters working according to the switching regulator principle are used. In this design approach, each of these switching regulators needs an inductor.

For an end product, it is often important that as little PCB space as possible be used and that the associated costs be as low as possible. A popular way of accomplishing this is by taking the integration route. Integrating the circuit into the silicon works well for switching regulators and linear regulators at low power.

There is a large selection of combined, highly integrated switching regulator ICs, often also referred to as power management integrated circuits (PMICs), available. Figure 1 shows such a highly integrated DC-to-DC converter, the ADP5014.

To reduce the package size of the circuit shown in Figure 1 even further, it is possible to integrate the inductors into the package. This is done in the solution shown in Figure 2 with an LTM4668. It has four channels and requires only a low number of external components because the usually quite large inductors are integrated into the package.

Figure 1. An ADP5014 as an example of a DC-to-DC converter for generating up to four output voltages from one input voltage (simplified representation).
Figure 2. A compact solution with integrated inductors using an LTM4668 (simplified representation).

The LTM module family provides a high power density, has exceptional EMC behavior, and is extremely robust. However, it can be more costly compared to a solution with external components.

There is a third solution, similar to the concept shown in Figure 1, but composed of a single-inductor multiple output (SIMO) converter. Here, one inductor is used as an energy storage device, specifically as a current storage device, and all channels share it. Many different versions exist. The inductor can be charged with energy at one point in time and the energy can then be discharged partially via the different channels. In another implementation, the inductor is charged and then completely discharged for one channel and then this empty energy storage device is passed on to the next channel, where it is charged and discharged again, and then to each subsequent channel until all channels have been supplied.

The power supply has different characteristics depending on the given implementation. In general, this concept works quite well with relatively low power. The sizing of the internal MOSFETs and the design of the single external inductor are optimized for low power.

The integrated switches in the MAX77655 that allow the single inductor to be used for all channels also allow the available voltage to be converted to a higher or a lower voltage. The respective operating mode is made possible through the appropriate driving of the integrated MOSFETs.

Figure 3. A MAX77655 SIMO converter generating four voltages with just one IC and one inductor (simplified representation).

With a SIMO converter as shown in Figure 3, multiple voltages can be generated efficiently with just one energy storage inductor. This provides for a more compact power supply architecture and can lower the costs.

Related

Source: Analog Devices

Recent Posts

YAGEO Releases High Isolation Transformer for 1500VDC Applications

12.6.2025
2

Smoltek CNF-MIM Capacitor Commercialization Update

11.6.2025
7

Understanding Switched Capacitor Converters

9.6.2025
27

DigiKey Offers Zephyr Operating System Workshop and Training Videos

6.6.2025
12

Exxelia to Present Smart Integrated Magnetics and MML Film Capacitors at SIAE25 

6.6.2025
28

What Track Width To Use When Routing PCB

6.6.2025
15

YAGEO Unveils PulseChip LAN Transformer

6.6.2025
13

Bourns Releases Automotive Impedance Matching Transformer

6.6.2025
8

5th PCNS Conference Registration Now Open!

5.6.2025
21

Capacitance Definition of Non-Linear Voltage Dependent Capacitors

5.6.2025
21

Upcoming Events

Jun 24
17:00 - 18:00 CEST

Ultra-Compact and Efficient Switched-Capacitor Power Converters

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version