Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Unveils High Reliability Compact Micro Encoders

    July 2025 ECST Components Survey Continue with Strong Sales Sentiment

    SCHURTER Releases Chip Fuse for ATEX and Precision Applications

    SCHURTER Introduces Reliable Arc-Free Switching Technology

    Additive Manufacturing of Mn-Zn Ferrite Planar Inductors

    Evaluation and Modeling of Supercapacitors for Reliability of Lifetime Predictions

    Hirose Releases High Current Vibration-Resistant Connectors

    Researchers Presents High-Performance Carbon-Based Supercapacitors

    Hirose Launches World’s Lowest Profile and Narrowest Pitch FPC Connector

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Unveils High Reliability Compact Micro Encoders

    July 2025 ECST Components Survey Continue with Strong Sales Sentiment

    SCHURTER Releases Chip Fuse for ATEX and Precision Applications

    SCHURTER Introduces Reliable Arc-Free Switching Technology

    Additive Manufacturing of Mn-Zn Ferrite Planar Inductors

    Evaluation and Modeling of Supercapacitors for Reliability of Lifetime Predictions

    Hirose Releases High Current Vibration-Resistant Connectors

    Researchers Presents High-Performance Carbon-Based Supercapacitors

    Hirose Launches World’s Lowest Profile and Narrowest Pitch FPC Connector

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

NEC Nanobrushes: A New Carbon Material to Boost Batteries and Capacitors

7.7.2016
Reading Time: 2 mins read
A A

source: IEEE news

NEC says it has produced a new addition to its portfolio of nanomaterial discoveries—the carbon nanobrush. The company says the new material will boost the performance of batteries, sensors, and capacitors among other devices.

RelatedPosts

Bourns Unveils High Reliability Compact Micro Encoders

July 2025 ECST Components Survey Continue with Strong Sales Sentiment

SCHURTER Releases Chip Fuse for ATEX and Precision Applications

The nanobrush is a fibrous aggregate of single-walled carbon nanohorns measuring several microns in length. These thimble-shaped nanohorns measure 2 to 5 nm in diameter, and between 40 to 50 nm in length.

Like nanohorns, which NEC discovered in 1998, nanobrushes have disperse well in water and allow other molecules to stick to their surface, which makes them suitable for use as conductive additives and compounds. Despite the similarities between the two materials, the nanobrush boasts more than 10 times the electrical conductivity of spherical aggregate of nanohorns of the same length.

img

Image: NEC

Nanobrushes are made from aggreagates of carbon nanohorns.
Not all details of the new material’s structure are known yet, but NEC believes nanobrushes radially gather during manufacture and are connected fibrously via a one-dimensional chemical bond at their center. Nanohorns, on the other hand, are produced in aggregates that form a spherical shape roughly 100 nm in diameter. A cluster of such nanohorns would contain gaps between them, hence the difference in conductivity.

Given the characteristics of carbon nanobrushes, NEC expects they will help improve the performance of a range of devices, including the speed of sensors, actuator response times, and the output of batteries and capacitors.

“In batteries, nanobrushes will be mainly used as conductive additives in cathodes and anodes to help increase electric current,” says Ryota Yuge, the discoverer of the new carbon material and a principal researcher in NEC’s IoT Devices Research Laboratories. “And because they help reduce a cell’s internal resistance, we estimate an increase of ten to 15 percent in a cell’s quick charge-discharge properties.”

That would make the material attractive for rapid charging of electric vehicles, NEC points out.

Yuge also expects to see nanobrushes used in sensors, especially those that undergo changes in shape, such as temperature and strain sensors, as well as sensors required for flexible electronics.

“Three-dimensional structures of nanobrushes can be formed in a sensor’s electrodes, so regardless of a sensor’s change in shape, current-voltage characteristics continue to show linear behavior,” he explains.

While there are no estimates available regarding improved sensor speeds, Yuge says capacitors incorporating nanobrushes can expect to see a two- to three-fold capacitance improvement.

Like nanohorns, nanobrushes can be manufactured at room temperature and under normal atmospheric pressure. Essentially, a high-powered laser is used to irradiate a mass of carbon, thereby making for a relatively efficient and low-cost process, says NEC.

However, this method produces both nanobrushes and nanohorn spherical aggregates simultaneously, and the researchers have still to establish an ideal method to separate the two materials. Controlling the length of the nanobrush is another challenge that needs to be dealt with. Nevertheless, Yuge says they will be ready to start sampling the material within the next twelve months. Nanohorns have been commercially available since 2013.

Related

Recent Posts

Evaluation and Modeling of Supercapacitors for Reliability of Lifetime Predictions

4.8.2025
13

Researchers Presents High-Performance Carbon-Based Supercapacitors

1.8.2025
19

Modelithics Announces v25.5 of the COMPLETE+3D Library for Ansys HFSS

1.8.2025
4

PCNS 2025 Final Program Announced!

4.8.2025
53

European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

30.7.2025
53

Switched Capacitor Converter Explained

28.7.2025
35

Samsung Releases 1000V 1812 X7R 100nF MLCC for Electric Vehicles

28.7.2025
26

Samsung Electro-Mechanics Releases Molded MLCC Capacitors

28.7.2025
98

Researchers Demonstrated 200C Polymer Film Dielectric

28.7.2025
16

Researchers Demonstrated Zinc-Ion Based Photo-Supercapacitor

28.7.2025
13

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version