Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

    European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

    TDK Announced Wide Frequency Automotive Wirewound POC Inductors

    Bourns Released Rugged, High-Power TO-247 Thick Film Resistor

    Bourns Announced Shielded Power Inductor with High Saturation and Low Radiation

    Würth Elektronik Expands MagI³C with Variable Step-Down Modules

    KYOCERA AVX Releases 600MHz Band71 Compact SAW Duplexer

    binder Supports Miniaturization of Power Supplies with M12 Compact Connectors

    Switched Capacitor Converter Explained

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

    European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

    TDK Announced Wide Frequency Automotive Wirewound POC Inductors

    Bourns Released Rugged, High-Power TO-247 Thick Film Resistor

    Bourns Announced Shielded Power Inductor with High Saturation and Low Radiation

    Würth Elektronik Expands MagI³C with Variable Step-Down Modules

    KYOCERA AVX Releases 600MHz Band71 Compact SAW Duplexer

    binder Supports Miniaturization of Power Supplies with M12 Compact Connectors

    Switched Capacitor Converter Explained

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Non-noble Finishes

7.9.2021
Reading Time: 4 mins read
A A

Tin and silver are the two most common used non-noble finishes. Tin finishes are used in a wide range of applications, from white goods to automotive. Silver is primarily used in power/high current applications.

Tin
Tin contact finishes are the most widely used non-noble contact finish. They are characterized by low durability (tin is a soft material) and high mating force (high friction coefficient and high contact force), and susceptibility to fretting corrosion.

RelatedPosts

Polymer Materials and Processing

What is RF Connector

Connector Materials and Processes

These characteristics indicate that tin finishes are not suitable for connector applications requiring high mating cycles and high pin counts. These are intrinsic limitations though the range of mating cycles and pin counts can be extended by the use of contact lubricants.

Susceptibility to fretting corrosion suggests that tin finishes are questionable for use in demanding mechanical environments or those with large temperature variations. It must be noted, however, that tin finishes have been successfully used in under hood automotive applications; applications characterized by demanding mechanical and thermal requirements. This success has been realized by the use of high contact forces to ensure the mechanical stability necessary to minimize fretting corrosion degradation. This is a good example of a guideline rather than a rule with respect to concern for fretting corrosion. But, it is good practice to critically evaluate the mechan and thermal characteristics of an application when considering tin as a contact finish. Apart from fretting corrosion, tin may be a good choice for harsh chemical environments due to the self limiting passivating surface oxide. An additional temperature concern with tin finishes is the growth of copper-tin intermetallic compounds at the interface between the tin and the copper alloy contact spring. In worst case conditions the tin can be converted into intermetallic compounds with both mechanical and electrical effects. Mechanically the intermetallic compounds are brittle and electrically they are poor conductors. Tin finishes may not be appropriate in applications where the connector is exposed to temperatures in excess of 100 degrees Celsius.

The current carrying capacity and electrical resistance of tin finishes will be discussed simultaneously. High current applications, say tens of amperes, can be problematic due to the effects of Joule, or I2R, heating. Joule heating and its consequences for connector degradation will be discussed in detail in Chapter II/2.8.2 Power Applications. At this point it is sufficient to note that Joule heating can create a positive feedback loop because contact resistance increases with temperature; Joule heating increases resistance and increased resistance increases temperature and the loop continues. It is important, therefore, for connectors intended to carry high currents to have a low and stable contact resistance. Tin can readily realize low values of contact resistance. The stability of tin contact resistance, however, may be compromised by fretting corrosion driven increases in contact resistance as discussed earlier. Once again, practice has shown that tin interfaces can provide reliable high current performance as long as the mechanical stability of the contact interface is maintained, generally through the use of high contact forces. The success of tin finished connectors in the white goods industry is an example of this capability.

To summarize:

Tin finished connectors are intrinsically limited to low durability, low pin count applications due to the fact tin is a soft material (high friction) and high contact forces are needed to ensure the mechanical stability of the contact interface to reduce susceptibility to fretting corrosion. Another intrinsic limitation is the application temperature due to intermetallic compound effects on electrical and mechanical performance.

When concerns for fretting corrosion can be minimized or controlled, however, tin finished contacts can be used in a broad range of connector applications. The difficulty in minimizing the potential for fretting corrosion, however, should not be under emphasized.

Silver
The major limitation of silver as a contact finish is its susceptibility to surface tarnish films. The tarnish films are more an appearance than a functional problem because they are readily disrupted on mating and the desired silver-to-silver contact interface is easily established. The use of silver finishes in typical connector applications is minimal due to resistance failures in low force non-wiping relay applications, in which the tarnish films were not effectively disrupted, highlighting the potential for tarnish related failures. The major application area for silver finishes is in high current connectors where the high electrical conductivity of silver takes on enhanced importance due to Joule heating concerns.

Silver is intermediate in hardness between tin and gold and can be used at contact forces lower than those for tin because the requirement for mechanical stability of the contact interface is not as demanding. Thus, silver finished contacts will have higher durability and lower mating forces than tin finished contacts. The pin count does not come into play because power connectors do not generally require high pin counts.

The current capacity, resistance and stability of resistance of silver finishes are good due high conductivity and low susceptibility to fretting corrosion. High contact forces are typically used in power contacts, further adding to mechanical and electrical stability.

Environments containing sulfur promote tarnish formation. Sulfur plus chloride can result in more deleterious surface films. Silver plated contacts are often protected from tarnish by including special vapor phase inhibitor paper in the packaging.

Related

Source: Wurth elektronik

Recent Posts

Non-Magnetic Interconnects

23.4.2025
24

10 Tips for Ensuring Reliability of Discrete Wire Assemblies

20.2.2025
54

Polymer Materials and Processing

31.1.2025
47

Basic PCB Technology Overview

1.7.2025
17

What is RF Connector

17.12.2024
9

Creepage and Clearance of Connector

25.7.2025
16

Microwave Multi Line Connectors Mounting and Handling Precautions

17.12.2024
2

BASIC PCB Design Rules – Layout

1.7.2025
29

MEMR RF Relay for Space Compact Redundancy Ring

17.12.2024
3

Connector Temperature Rise and Derating

13.1.2023
22

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version