Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Researchers Presents High-Performance Carbon-Based Supercapacitors

    Hirose Launches World’s Lowest Profile and Narrowest Pitch FPC Connector

    Modelithics Announces v25.5 of the COMPLETE+3D Library for Ansys HFSS

    PCNS 2025 Final Program Announced!

    DigiKey Expands Inventory with Over 32,000 Stocking NPIs in Q2 2025

    YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

    European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

    TDK Announced Wide Frequency Automotive Wirewound POC Inductors

    Bourns Released Rugged, High-Power TO-247 Thick Film Resistor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Researchers Presents High-Performance Carbon-Based Supercapacitors

    Hirose Launches World’s Lowest Profile and Narrowest Pitch FPC Connector

    Modelithics Announces v25.5 of the COMPLETE+3D Library for Ansys HFSS

    PCNS 2025 Final Program Announced!

    DigiKey Expands Inventory with Over 32,000 Stocking NPIs in Q2 2025

    YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

    European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

    TDK Announced Wide Frequency Automotive Wirewound POC Inductors

    Bourns Released Rugged, High-Power TO-247 Thick Film Resistor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Paper-based supercapacitor uses metal nanoparticles to boost energy

9.10.2017
Reading Time: 3 mins read
A A

source: Energy Harvesting Journal article

Using a simple layer-by-layer coating technique, researchers from the U.S. and Korea have developed a paper-based flexible supercapacitor that could be used to help power wearable devices.

RelatedPosts

Researchers Presents High-Performance Carbon-Based Supercapacitors

Hirose Launches World’s Lowest Profile and Narrowest Pitch FPC Connector

Modelithics Announces v25.5 of the COMPLETE+3D Library for Ansys HFSS

The device uses metallic nanoparticles to coat cellulose fibers in the paper, creating supercapacitor electrodes with high energy and power densities — and the best performance so far in a textile-based supercapacitor.

By implanting conductive and charge storage materials in the paper, the technique creates large surface areas that function as current collectors and nanoparticle reservoirs for the electrodes. Testing shows that devices fabricated with the technique can be folded thousands of times without affecting conductivity.

“This type of flexible energy storage device could provide unique opportunities for connectivity among wearable and internet of things devices,” said Seung Woo Lee, an assistant professor in the Woodruff School of Mechanical Engineering at the Georgia Institute of Technology.

“We could support an evolution of the most advanced portable electronics. We also have an opportunity to combine this supercapacitor with energy-harvesting devices that could power biomedical sensors, consumer and military electronics, and similar applications.”

The research, done with collaborators at Korea University, was supported by the National Research Foundation of Korea and reported September 14 in the journal Nature Communications. Energy storage devices are generally judged on three properties: their energy density, power density and cycling stability.

Supercapacitors often have high power density, but low energy density — the amount of energy that can be stored — compared to batteries, which often have the opposite attributes. In developing their new technique, Lee and collaborator Jinhan Cho from the Department of Chemical and Biological Engineering at Korea University set out to boost energy density of the supercapacitors while maintaining their high power output.

The researchers began by dipping paper samples into a beaker of solution containing an amine surfactant material designed to bind the gold nanoparticles to the paper. Next they dipped the paper into a solution containing gold nanoparticles. Because the fibers are porous, the surfactants and nanoparticles enter the fibers and become strongly attached, creating a conformal coating on each fiber. By repeating the dipping steps, the researchers created a conductive paper on which they added alternating layers of metal oxide energy storage materials such as manganese oxide. The ligand-mediated layer-by-layer approach helped minimize the contact resistance between neighboring metal and/or metal oxide nanonparticles. Using the simple process done at room temperatures, the layers can be built up to provide the desired electrical properties.

“It’s basically a very simple process,” Lee said. “The layer-by-layer process, which we did in alternating beakers, provides a good conformal coating on the cellulose fibers. We can fold the resulting metallized paper and otherwise flex it without damage to the conductivity.”

Though the research involved small samples of paper, the solution-based technique could likely be scaled up using larger tanks or even a spray-on technique. “There should be no limitation on the size of the samples that we could produce,” Lee said. “We just need to establish the optimal layer thickness that provides good conductivity while minimizing the use of the nanoparticles to optimize the tradeoff between cost and performance.”

The researchers demonstrated that their self-assembly technique improves several aspects of the paper supercapacitor, including its areal performance, an important factor for measuring flexible energy-storage electrodes. The maximum power and energy density of the metallic paper-based supercapacitors are estimated to be 15.1mWcm^2 and 267.3 Wh cm^2, respectively, substantially outperforming conventional paper or textile supercapacitors.

The next steps will include testing the technique on flexible fabrics, and developing flexible batteries that could work with the supercapacitors. The researchers used gold nanoparticles because they are easy to work with, but plan to test less expensive metals such as silver and copper to reduce the cost. During his Ph.D. work, Lee developed the layer-by-layer self-assembly process for energy storage using different materials. With his Korean collaborators, he saw a new opportunity to apply that to flexible and wearable devices with nanoparticles.

“We have nanoscale control over the coating applied to the paper,” he added. “If we increase the number of layers, the performance continues to increase. And it’s all based on ordinary paper.”

Source and top image: Georgia Institute of Technology

Related

Recent Posts

Researchers Presents High-Performance Carbon-Based Supercapacitors

1.8.2025
2

Modelithics Announces v25.5 of the COMPLETE+3D Library for Ansys HFSS

1.8.2025
1

PCNS 2025 Final Program Announced!

31.7.2025
19

European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

30.7.2025
23

Switched Capacitor Converter Explained

28.7.2025
17

Samsung Releases 1000V 1812 X7R 100nF MLCC for Electric Vehicles

28.7.2025
20

Samsung Electro-Mechanics Releases Molded MLCC Capacitors

28.7.2025
42

Researchers Demonstrated 200C Polymer Film Dielectric

28.7.2025
13

Researchers Demonstrated Zinc-Ion Based Photo-Supercapacitor

28.7.2025
11
Comparative display of a grain size and domain structure; b free energy; c P-E loops after high-entropy ceramics (HECs) and PGS design. source: Nature Communications  ISSN 2041-1723

Researchers Propose Novel MLCC Dielectric Design to Increase Energy Storage Capacity

24.7.2025
43

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version