Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    ESR of Capacitors, Measurements and Applications

    Murata Christophe Pottier Appointed President of EPCIA

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    YAGEO Unveils Compact 2.4 GHz SMD Antenna

    KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

    Molex Releases Industry-First Quad-Row Board-to-Board Connectors with EMI Shields

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    ESR of Capacitors, Measurements and Applications

    Murata Christophe Pottier Appointed President of EPCIA

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    YAGEO Unveils Compact 2.4 GHz SMD Antenna

    KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

    Molex Releases Industry-First Quad-Row Board-to-Board Connectors with EMI Shields

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Planar vs Traditional Transformers in Flyback Converters

8.11.2022
Reading Time: 5 mins read
A A

This blog article written by Pablo Blázquez, Frenetic power electronic engineer, discusses planar transformers for flyback and forward converters with a general overview of the basics and a comparison between planar and traditional transformers.

Flyback and Forward converters are topologies used for low-medium power isolated applications. The Flyback is more suitable for high-voltage outputs, while the forward has the disadvantage of having an extra inductor on the output and is not well suited for high-voltage outputs.

RelatedPosts

Common Mistakes in Flyback Transformer Specs

Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

How to design a 60W Flyback Transformer

We will analyse how planar transformers can give us more flexibility with these converters when we have space constraints, with a lower leakage inductance, incredibly good repeatability, and great thermal characteristics.

Flyback and Forward considerations

In paper [1] is mentioned that, while designing a Flyback or Forward converter, we will normally face several challenges:

  • ​EMI (Electromagnetic Interferences) losses
  • Efficiency
  • Form factor
  • Heat extraction
Figure 2: Transformer design challenges

Large leakage inductances affect the performance of the transformer creating large voltage spikes on the switch, leading us to use higher-rated voltage switches. Also, this high voltage spike creates common mode noise in the parasitic interwinding capacitance.

The form factor of the transformer, normally the height, will define the size of the converter as well as the places where it can be positioned. For example, a traditional flyback will be difficult to fit in certain low-profile applications, such as headphones or flat TVs.

The higher height is a problem regarding heat transfer, as it generates higher thermal resistance. This happens as the contact surface is more distributed in the planar transformer than in the wound transformer that is more concentrated in one place. 

Planar Transformers or Traditional Transformers?

Traditional Transformers

If we compare planar transformers with traditional ones, we will use less space in the PCB footprint in the wound transformers. So unless power dissipation is a problem, designers will normally use standard transformers.

Winding in traditional transformers is also simple and we know how to do it. The time needed for creating a design and wounding is much lower in traditional transformers.

We will have higher temperatures, as the traditional transformers are limited by the amount of W that the core can dissipate due to the temperature rise. This normally requires forced convection to address this problem, while planar transformers can work with higher W in the core and therefore, we can reduce the losses in the windings. This will give us the possibility of using a heatsink instead of a fan. 

Overall, wound transformers must face all the design considerations in Flyback and Forward converters, but we know how to design and create designs incredibly fast.

Planar Transformers

Planar magnetics are chosen for the high-frequency spectrum because they offer a small number of turns (compared with wound transformers) and extremely low resistance.

Planar transformers can enhance the performance of these converters, as we will be able to have lower height, weight, and leakage inductance. We will have wider surface areas than traditional E, EC, or EP cores. This means that we will be able to have fewer turns, as well as being able to have lower DC resistance. 

Regarding the winding, it is difficult to enter a wire that can handle all this power in such a small space, but the planar transformers’ rigid structure allows us to use PCB windings instead of bobbins. This way we can have lower-profile transformers, as well as a great level of repeatability, as the printed circuit nature of the windings. We will also be able to integrate into the converter´s PCB the windings for having an even more compact design. 

However, there are some drawbacks when designing a planar transformer. We can have problems with safety requirements. Using PCB FR4 can generate problems in the external layer of the windings, top and bottom, and we will need to use traditional isolation methods, like Nomex, to meet those safety requirements.  At least in the internal layers we are covered. Multiple layers can be problematic in the design phase, especially if thick copper plating is required.

Another problem that we will face when designing with Planar transformers is the EMI losses. The flux must travel through the side wall of the core so, the flux on the side will be increased. However, the flux density that we will be having on the central leg will be much lower than in the wound transformer.

Planar transformers are an interesting option for some applications: they have a more complex design than traditional transformers, but can help us in some situations.

Summary

Planar transformer advantages and cons:

Benefits

  • Planar transformers give us extremely low leakage and AC resistance
  • Overall size of the converter is reduced
  • Better heat transfer

Limitation

  • Large interwinding capacitance (Increased CM noise) and causes EMI problems

References

[1] Ali Saket, M. Ordonez, N. Shafiei. (2018). Planar Transformers with Near-Zero Common-Mode Noise for Flyback and Forward Converters (Vol n. º 33) [IEEE]. IEEE Transactions on power electronics.

[2] Achieving Higher Efficiency Using Planar Flyback Transformers for High Voltage AC/DC Converters. Bourns.

[3] “What’s the Difference Between Conventional and Planar Switching Power Transformers? “ Passive Components Blog

Related

Source: Frenetic

Recent Posts

RF Inductors: Selection and Design Challenges for High-Frequency Circuits

10.11.2025
26

Transformer Safety IEC 61558 Standard

7.11.2025
12

ESR of Capacitors, Measurements and Applications

7.11.2025
49

3-Phase EMI Filter Design, Simulation, Calculation and Test

6.11.2025
54
Image credit: Samtec

How to Match the Right Connector with Protocol Requirements

6.11.2025
14

Coilcraft Introduces Ultra-Low Loss Shielded Power Inductors

6.11.2025
20

Exxelia Presents Smart Integrated Magnetics Solution at Space Tech Expo 2025 

5.11.2025
16

Murata Expands High Cutoff Frequency Chip Common Mode Chokes

5.11.2025
10

Transformer Design Optimization for Power Electronics Applications

4.11.2025
23

Upcoming Events

Nov 12
11:00 - 12:00 CET

PCB Design: Impedance is for everyone!

Nov 12
November 12 @ 12:00 - November 13 @ 14:15 EST

Microelectronic Packaging Failure Modes and Analysis

Nov 13
11:00 - 11:30 CET

DC/DC Converters in Automotive Applications

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version