Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    DigiKey Expands Inventory with Over 32,000 Stocking NPIs in Q2 2025

    YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

    European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

    TDK Announced Wide Frequency Automotive Wirewound POC Inductors

    Bourns Released Rugged, High-Power TO-247 Thick Film Resistor

    Bourns Announced Shielded Power Inductor with High Saturation and Low Radiation

    Würth Elektronik Expands MagI³C with Variable Step-Down Modules

    KYOCERA AVX Releases 600MHz Band71 Compact SAW Duplexer

    binder Supports Miniaturization of Power Supplies with M12 Compact Connectors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    DigiKey Expands Inventory with Over 32,000 Stocking NPIs in Q2 2025

    YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

    European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

    TDK Announced Wide Frequency Automotive Wirewound POC Inductors

    Bourns Released Rugged, High-Power TO-247 Thick Film Resistor

    Bourns Announced Shielded Power Inductor with High Saturation and Low Radiation

    Würth Elektronik Expands MagI³C with Variable Step-Down Modules

    KYOCERA AVX Releases 600MHz Band71 Compact SAW Duplexer

    binder Supports Miniaturization of Power Supplies with M12 Compact Connectors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Power Applications

20.9.2021
Reading Time: 4 mins read
A A

Power applications are generally considered “high current/voltage” applications. There are also two aspects to power applications. The first addresses the issue of Joule, I2R, heating in high current contacts which leads to a possibility of definition of “high” as a current sufficient to cause Joule heating to be taken into consideration. The second addresses how current is distributed through the electronic system, by dedicated high current contacts or multiple low current contacts connected in parallel. Current/voltage considerations will be discussed first.

Voltage/Current Considerations
The current and voltage requirements of an application affect the design, materials and performance requirements a connector must meet to be suitable for the application. It must be noted that current and voltage requirement issues are primarily of concern only in power applications because the currents and voltages in typical signal applications will not give rise to the issues to be discussed. The issues to be addressed are different for voltage and current and will be discussed separately.

RelatedPosts

Polymer Materials and Processing

What is RF Connector

Connector Materials and Processes

Voltage Considerations
Voltage considerations involve primarily the design and materials of the connector housing. The issue is the potential for high voltage breakdown of insulators in the connector. The insulators of concern are air, the space between the contacts in the connector housing, and the housing material, the insulation supporting and separating the current carrying contacts in the housing. In both cases voltage breakdown results in unwanted current flow, arcing between contacts in the case of air breakdown, and arcing or leakage currents through or on the surface of the connector housing. Voltage breakdown has both safety and performance aspects. It is important to note that it is the electrical field between the contacts that causes the breakdown. The electric field is given by the quotient of the voltage divided by the separation between the contacts:

The electric field, thus the breakdown voltage, depends on the spacing between the contacts, a distance that has decreased markedly due to connector miniaturization in recent years.

Voltage breakdown concerns are addressed by connector requirements, primarily dictated by safety concerns (arcing), called clearance and creepage distances, illustrated in Figure 2.163. Clearance is the line of sight distance between two power and ground contacts and the clearance requirement is sufficient to ensure that dielectric breakdown of air does not occur. Creepage is the shortest distance along the housing surface between the two points where adjacent power and ground contacts are retained in the housing. The creepage requirement is intended to put limits on the degradation of the surface resistance of the connector housing material in the conditions, chemistry and humidity of the application environment. Voltage breakdown of the bulk housing material, the walls between contacts, is seldom a concern.

Fig. 2.163: Clearance and creepage distances

Another safety related impact on connector housing design is to provide barriers around the contacts to prevent inadvertent contact of external conductors or body parts, primarily fingers, to the hot side of the connector. Such protection is often referred to as “finger proofing”. Two modes of protection are common, recessing of contacts within the housing and silos surrounding the contacts. Examples of recessed and siloed contacts are provided in Figure 2.164a and b respectively.

Fig. 2.164: Recessed (a) and silloed (b) contacts

Current Considerations
The major concern relative to current, as noted, is Joule, I2R, heating. The I2 dependence indicates that higher current, i.e. power applications, are particularly sensitive to Joule heating and the associated temperature increases. As noted at several points in this text, temperature contributes to acceleration of many connector degradation mechanisms including corrosion, stress relaxation and, in worst case situations, degradation, including melting, of connector housings. Joule heating is particularly problematic in that it creates a positive feedback loop due to the positive temperature coefficient of resistivity of copper alloys. All of the components of resistance in a connector, permanent connection, separable interface and bulk resistances (Chapter I/1.3.3 The Electrical Interface: Contact Resistance) include the resistivity of contact spring material as a parameter. Thus all of these resistances increase with temperature. The increase in resistance results in an increase in Joule heating and the loop continues. A schematic illustration of the T-rise of a connector as a function of current is provided in Figure 2.165. Briefly, a T-rise measurement is generally made by attaching a thermocouple to the “hot spot” on the contact prior to testing. A selected current is applied, maintained and the temperature of the contact is measured periodically. The test is ended when the temperature has stabilized with time. IEC 60512-1 Part 3-1 Test 5a is a standard for T-rise testing.

Fig. 2.165: Temperature rise vs. time as function of current

This consequence of Joule heating is addressed by application of temperature rise, T-rise, limits on connectors in power applications. One such commonly accepted T-rise limit, used to current rate connectors, is a 30 degree C increase in temperature. Power contact current rating will be discussed in the following sub-chapter.

It must be noted that PCB traces may greatly affect temperature rise in Wire To Board applications therefore any general comment must always be proof checked in real conditions/applications.

Two aspects of power contact/connector applications will be reviewed; contact/connector current rating and the distribution of current within an electronic system. Two approaches to current distribution will be discussed, the use of dedicated high current contacts and the use of multiple lower current capacity contacts in parallel in a connector housing.

Related

Source: Wurth elektronik

Recent Posts

Non-Magnetic Interconnects

23.4.2025
24

10 Tips for Ensuring Reliability of Discrete Wire Assemblies

20.2.2025
54

Polymer Materials and Processing

31.1.2025
47

Basic PCB Technology Overview

1.7.2025
17

What is RF Connector

17.12.2024
9

Creepage and Clearance of Connector

25.7.2025
16

Microwave Multi Line Connectors Mounting and Handling Precautions

17.12.2024
2

BASIC PCB Design Rules – Layout

1.7.2025
29

MEMR RF Relay for Space Compact Redundancy Ring

17.12.2024
3

Connector Temperature Rise and Derating

13.1.2023
22

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version