• Latest
  • Trending
  • All
  • Capacitors
  • Resistors
  • Inductors
  • Filters
  • Fuses
  • Non-linear Passives
  • Applications
  • Integrated Passives
  • Oscillators
  • Passive Sensors
  • New Technologies
  • Aerospace & Defence
  • Automotive
  • Industrial
  • Market & Supply Chain
  • Medical
  • RF & Microwave
  • Telecommunication

RC Snubber Design for SMPS Protection Part II

24.8.2022

Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

21.3.2023

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

20.3.2023

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

20.3.2023

Flying Capacitors Explained

17.3.2023

TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

16.3.2023

ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

16.3.2023
  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About
No Result
View All Result
NEWSLETTER
Passive Components Blog
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    TDK Extends Range of Industrial Single Pair Ethernet (SPE) Inductors

    Premo Unveils New series of 11kW 3-Phase On-Board Charger Transformers

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • Market & Supply Chain
    • Medical
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors
    • Resistors
    • RF & Microwave
    • Telecommunication

    Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

    SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

    Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

    Flying Capacitors Explained

    TDK Introduces Compact High-Current Chokes for Automotive and Industrial Applications

    ECIA NA February 2023 Electronic Components Sales Confirms Growth Trend

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    TDK Extends Range of Industrial Single Pair Ethernet (SPE) Inductors

    Premo Unveils New series of 11kW 3-Phase On-Board Charger Transformers

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos
    • Sensors

    Investigating Modeling Techniques of Class II Ceramic Capacitors Losses for High Voltage and Current Applications

    Understanding Basics of Current Sense Resistors

    What Decoupling Capacitor Value To Use And Where To Place Them

    How to Measure Rated Current on Power Inductors

    LTspice Simulation of a Spark-Gap Circuit Protection Surge Arrester

    Approximate Inductor Design Using Two Alternative Cores

    1kW Phase Shift Full Bridge Converter Design and Simulation

    Multiphase Buck Trans-Inductor Voltage Regulator (TLVR) Explained

    Smart Power Distribution Unit Architecture and Inductor Losses

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Preferred Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

RC Snubber Design for SMPS Protection Part II

24.8.2022
Reading Time: 12 mins read
0 0
0
SHARES
4k
VIEWS

Source: In Compliance Mag article

by Bogdan Adamczyk and Bill Spence

RelatedPosts

Snubber Capacitors Functionality and Selection Guide

TDK Releases its Application Guide on Motor/Inverter Circuit Configuration

What Ceramic Technologies Are Best for High Power Density Applications?

Part II: Design Process and Verification

This part II of the RC Snubber topic discusses the systematic and efficient design process and design verification through simulations and laboratory measurements (see [1] for Part I – fundamentals of inductive switching and RC snubber impact).

Design Process

Figure 1 shows the LC resonant circuit with an RC snubber discussed in Part I [1].

Featured Figure 1: LC parasitic circuit with the RC snubber

In this part we discuss a systematic and efficient design process leading to the choice of the snubber’s capacitor and resistor values shown in Figure 1.

The resonant frequency formula for a circuit without the snubber is [1]

 (1)

The purpose of using the RC snubber is to suppress the ringing and move the ringing frequency to a lower value (often 50% or less of the original value). Note that in order to half the ringing frequency in Eq. (1), the term under the square root needs to quadruple. If we keep the inductance parasitics constant, the quadruple of the capacitive component can be accomplished by

  (2)

where

  (3)

Now the total circuit capacitance, C, is four times the original parasitic capacitance value.

  (4)

The traditional RC snubber design process consists of the following steps:

Measure the ringing frequency at the switching node,  fr

Add a capacitor, CADD, from the switching node to the reference node

Measure the resulting (lower) ringing frequency, fr ‘

Keep changing the added capacitor’s value until the ringing frequency fr ‘ is approximately half of the original ringing frequency, fr, without the added capacitor

This last CADD is the minimum value for the snubber capacitance, Csnub.

Calculate C∑parasitics

  (5)

Calculate L∑parasitics

  (6)

Finally, calculate Rsnub, [2],

  (7)

Note that this traditional design process requires the substitution of capacitor snubber values to discover CADD by halving fr. This can be easily done in simulations, but not in the actual measurements. The constant changing of capacitor values, hunting for the particular value, is time consuming and can be destructive.

A faster and more practical method is to try a single capacitor value to determine the circuit’s parasitic capacitance. This process consists of the following steps:

Measure the ringing frequency at the switching node,

Add a capacitor, CADD, from the switching node to the reference node. Pick a value between 47pF and 100pF as a starting point

Measure the resulting (lower) ringing frequency, fr ‘

Calculate C∑parasitics

  (8)

Calculate L∑parasitics

  (9)

Calculate Csnub,min, [3],

  (10)

Finally, calculate Rsnub

  (11)


Design Verification through Simulations

The unsnubbed circuit is shown in Figure 2(a) with the resonant frequency, fr = 412.6 MHz, shown in Figure 2(b), (Step 1).


Figure 2(a) shows the circuit with the added capacitance CADD = 100pF with the resonant frequency,
fr = 412.6 MHz, shown in Figure 2(b), (Step 2 and 3).

Figure 3: (a) Circuit with added capacitance, (b) resonant frequency


Step 4. Calculate C
∑parasitics

Step 5. Calculate L∑parasitics

Step 6. Calculate Csnub,min

Step 7. Calculate Rsnub

These resulting C and R values were implemented in the RC snubber shown in Figure 1. The simulated ringing waveforms for this circuit were discussed in Part I [1], and are repeated here in Figure 4.

Figure 4: Ringing waveforms with a snubber added: (a) close-up of a time domain waveform, (b) FFT of the waveform

Note that the new ringing frequency of 248.7 MHz is much lower than the original ringing frequency of 412.6 MHz, of the unsnubbed circuit.

Design Verification through Measurements

In this section we follow the design process of the previous section with the values obtained from measurements (instead of the simulated values).

Figure 5 shows a (redacted) circuit schematic of a buck SMPS with the designed snubber.

Figure 5: Buck SMPS with a snubber


Figure 6 shows the actual PCB and a differential probe used for measurements [4].

Figure 6: Actual PCB and a differential probe

Figure 7 shows the ringing waveform corresponding the un-snubbed circuit. The measured ringing frequency is fr = 476.1 MHz (Step 1).

Figure 7: Unsnubbed SMPS: voltage at the switching node


Next, a 68 pF capacitor is added (Step 2). The resulting ringing waveform is shown in Figure 8.

Figure 8: Voltage at the switching node with a C= 68 pF capacitor added


The new (lower) ringing frequency is fr‘ = 294.1 MHz (Step 3).

Step 4. Calculate C∑parasitics

Step 5. Calculate L∑parasitics

Step 6. Calculate Csnub,min

Step 7. Calculate Rsnub

Figure 9 shows the voltage waveform with the C = 150 pF snubber added.

Figure 9: Voltage at the switching node with a C = 150 pF snubber added

Note the decrease in the ringing frequency. Finally, a full RC snubber is implemented (Csnub = 150 pF, Rsnub = 7.5 Ω). The resulting waveform is shown in Figure 10.

Figure 10: Voltage at the switching node with a full RC snubber added


It is evident that the full RC snubber suppressed the ringing at the switching node.


Final Conclusions

It is worth repeating that parasitic inductance in the circuit is distributed over the entire PCB and includes the package inductances. While the snubber components are calculated assuming their effective values, there is no way to physically put them in the circuit to provide ideal damping. The best way to reduce overshoots and ringing is to actually minimize the undesirable inductances in the circuit with good layout practices. Choosing the right low side FETs with low inductance packages and/or integrated Schottky body diodes will offer additional benefits.

Finally, these equations will get you into the ballpark. Differences in leading edge and trailing edge ringing will result in Snubber Circuit component compromises.

Continue reading:

  • RC Snubber Design for SMPS Protection Part I
  • Filtering Capacitors for Switch Mode Power Supplies
  • Guide to Snubber


References

  1. Bogdan Adamczyk, Bill Spence, “RC Snubber Design for SMPS Protection – Part I: Fundamentals of Inductive Switching and RC Snubber Impact,” In Compliance Magazine, January 2019.
  2. Jeff Falin, “Minimizing Ringing at the Switch Node of a Boost Converter,” Texas Instruments Application Report SLVA255, September 2006.
  3. Havanur, Sanjay, Application Note AN100-1, Alpha & Omega Semiconductor, May 2007.
  4. Bill Spence, “Snubber Design: Reducing SMPS EMI,” Lunch and Learn, Gentex Corp., 2014.

Dr. Bogdan Adamczyk is a professor and the director of the EMC Center at Grand Valley State University (http://www.gvsu.edu/emccenter) where he performs research and develops EMC educational material. He is an iNARTE certified EMC Master Design Engineer, a founding member and the chair of the IEEE EMC West Michigan Chapter. Prof. Adamczyk is the author of the textbook “Foundations of Electromagnetic Compatibility with Practical Applications” (Wiley, 2017). He can be reached at [email protected]

William Spence is a Senior Electromagnetic-Compliance Engineer and has been working in Gentex Corporation’s Electro-Magnetic-Engineering Lab for the last fifteen years. Previously, Bill was a Senior Microphone Design Engineer at Electro-Voice, Inc., where he worked for twenty-four years. Bill’s name has been listed in a dozen U.S. Patents for automotive microphone, digital communications, and switch-mode-power-supply designs. He frequently presents seminars on EMC/ESD topics and microphone design. Bill can be reached at [email protected]

Related Posts

Capacitors

Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

21.3.2023
17
Capacitors

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

20.3.2023
13
Market & Supply Chain

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

20.3.2023
13

Upcoming Events

Mar 19
March 19 - March 23

APEC 2023

Mar 22
14:00 - 15:00 CET

Parasitic Components in Power Converters – Fundamentals and Measurements Rohde & Schwarz Webinar

Apr 3
April 3 @ 12:00 - April 4 @ 14:00 CEST

Microelectronic Packaging Failure Modes and Analysis

View Calendar

Popular Posts

  • What is a Dielectric Constant of Plastic Materials ?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Understanding High-Precision Resistor Temperature Coefficient of Resistance

    0 shares
    Share 0 Tweet 0
  • Capacitor Selection for Coupling and Decoupling Applications

    28 shares
    Share 28 Tweet 0
  • Leakage Current Characteristics of Capacitors

    0 shares
    Share 0 Tweet 0
  • How to Choose the Right Inductor for DC-DC Buck Applications

    0 shares
    Share 0 Tweet 0
  • Dielectric Constant and its Effects on the Properties of a Capacitor

    7 shares
    Share 7 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

PCNS Call for Papers !

Archive

2022
2021
2020
2019
2018
2017

Symposium

Passive Components Networking Symposium

Passives e-Learning

Knowledge Blog

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

© EPCI - Premium Passive Components Educational and Information Site

No Result
View All Result
  • Home
  • News
  • Video
  • Knowledge Blog
  • Preferred Suppliers
  • Events

© EPCI - Premium Passive Components Educational and Information Site

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.