Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

    Littelfuse Unveils High-Use Tactile Switches with 2 Million Cycle Lifespan

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

    Littelfuse Unveils High-Use Tactile Switches with 2 Million Cycle Lifespan

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Researchers create electronic plants

26.11.2015
Reading Time: 3 mins read
A A

source: Energy Harvesting Journal article

posted on November 26, 2015

RelatedPosts

Bourns Extends Rotational Life Option for its Guitar Potentiometer

Modeling and Simulation of Leakage Inductance

Power Inductor Considerations for AI High Power Computing – Vishay Video

Using semi-conductive polymers, both analog and digital electronic circuits can be created inside living flowers, bushes and trees, as researchers at Linköping University Laboratory for Organic Electronics have shown. The results are being published in Science Advances.

With the help of the channels that distribute water and nutrients in plants, the research group at the Laboratory for Organic Electronics, under the leadership of Professor Magnus Berggren, have built the key components of electronic circuits. In an article in Science Advances, they show how roses can produce both analog and digital electronic circuits, which over the long term could be used, for example, to regulate the plant’s physiology.

Traditional electronics send and process electronic signals, while plants transport and handle ions and growth hormones. In organic electronics, based on semi-conductive polymers, both ions and electrons can serve as signal carriers. With the help of organic electronics it therefore becomes possible to combine electric signals with the plant’s own, as if translating the plant’s signals into traditional electronics. With inexpensive organic electronics integrated into plants, a long range of possibilities opens up – such as utilizing energy from photosynthesis in a fuel cell, or reading and regulating the growth and other inner functions of plants.

“Previously, we had no good tools for measuring the concentration of various molecules in living plants. Now we’ll be able to influence the concentration of the various substances in the plant that regulate growth and development. Here, I see great possibilities for learning more,” says Ove Nilsson, professor of plant reproduction biology at the Umeå Plant Science Center and co-author of the article.

Since the beginning of the 1990s, Magnus Berggren – professor of Organic Electronics at Linköping University’s Norrköping campus – has been researching printed electronics on paper. Now and then the idea of putting electronics into the tree itself cropped up, but research funders were indifferent. Thanks to independent research money from the Knut and Alice Wallenberg Foundation at the end of 2012, Professor Berggren could hire three researchers with new doctorates: Roger Gabrielsson, Eleni Stavrinidou and Eliot Gomez. The task was to investigate – with the help of the more senior researchers at Linköping University and the Umeå Plant Science Center – whether it was possible to introduce and even produce electronics in plants.

The answer, in other words, was yes. In just about two years, the research group succeeded in getting plants to produce both analog and digital circuits.

Mr Gabrielsson found the polymer PEDOT-S, which turned out to be soluble in water. When it was absorbed into a rose, for example, it was converted into a hydrogel, which – suitably enough – forms a thin film along the channel through which the flower absorbs water and nutrients. Ms Stavrinidou then succeeded in getting the plants to produce ten-centimeter segments, 50 cm thick, of membranes – or film – of the conductive polymer. With an electrode at each end and a gate in the middle, an analog transistor was created.

“We’ve produced the perfect measurement values, which show that it really is a fully functional transistor,” Ms Stavrinidou says.

She has measured the conductive ability of the polymer from 0.13 siemens/cm all the way up to 1 siemens/cm.

Mr Gomez used another method common in plant biology – vacuum infiltration – to send another PEDOT variant together with nanocellulose fibres into the foliage of the rose. The cellulose forms a 3-D structure with small cavities – like a sponge – inside the rose leaf, and the cavities are filled with the conductive polymer. Electrochemical cells are thus formed with a number of pixels, partitioned by the veins. The electrolytes come from the fluid in the leaf. This means that the leaf functions in somewhat the same way as the printed character display on a roll that is manufactured at Acreo Swedish ICT in Norrköping.

“We can create electrochromatic plants in which the leaves change color – it’s cool, but maybe not so useful,” Mr Gomez says.

But what is otherwise a weakness of organic electronics – the cold and the wet – is solved by the plant when it encapsulates the polymer and protects it from wind and weather.

“It seems as if the polymers we use had been created for their function,” Mr Gabrielsson states.

Professor Berggren sees an entirely new field of research:

“Now we can really start talking about ‘power plants’ – we can place sensors in plants and use the energy formed in the chlorophyll, produce green antennas or produce new materials. Everything occurs naturally, and we use the plants’ own very advanced, unique systems. As far as we know, there are no previously published research results regarding electronics produced in plants. No one’s done this before,” Professor Berggren states.

Source and top image: Linköping University

Related

Recent Posts

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
46

Würth Elektronik Offers New Power Supplies Development Kit

29.4.2025
37

3D Printing of Passive Components from Manufacturer Perspective

26.4.2025
43

Hybrid Electrochemical Electrolytic Capacitor Provides High Frequency and High Capacitance Performance

25.4.2025
47

DigiKey Announces Sponsorship of KiCad to Support Open-Source EDA Development

9.4.2025
12

Supercapacitor Separator with High Ionic Conductivity Enables Line-Filter Applications at High Power

21.3.2025
46

Impedance Matching with RF LC Circuits 

20.3.2025
168

DigiKey Partners with SparkFun to Equip Young Engineers with XRP Robotics Kits

18.3.2025
16

Interlacing Strain Engineering Boost Energy Density of MLCCs

12.2.2025
83

Researchers Developed BaTiO3 based MLCC Material with High Energy Density at High Temperature Range

21.1.2025
104

Upcoming Events

May 14
11:00 - 12:00 CEST

Reliable RIGID.flex PCBs for Critical Applications – Made in Europe

May 14
17:00 - 17:30 CEST

Calculating Foil Winding Losses with AI

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Solid State Polymer Multilayer Capacitors For High Temperature Application

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Tariffs Crush Sales Sentiment in April 2025 ECST Results

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version