Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

    European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

    TDK Announced Wide Frequency Automotive Wirewound POC Inductors

    Bourns Released Rugged, High-Power TO-247 Thick Film Resistor

    Bourns Announced Shielded Power Inductor with High Saturation and Low Radiation

    Würth Elektronik Expands MagI³C with Variable Step-Down Modules

    KYOCERA AVX Releases 600MHz Band71 Compact SAW Duplexer

    binder Supports Miniaturization of Power Supplies with M12 Compact Connectors

    Switched Capacitor Converter Explained

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

    European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

    TDK Announced Wide Frequency Automotive Wirewound POC Inductors

    Bourns Released Rugged, High-Power TO-247 Thick Film Resistor

    Bourns Announced Shielded Power Inductor with High Saturation and Low Radiation

    Würth Elektronik Expands MagI³C with Variable Step-Down Modules

    KYOCERA AVX Releases 600MHz Band71 Compact SAW Duplexer

    binder Supports Miniaturization of Power Supplies with M12 Compact Connectors

    Switched Capacitor Converter Explained

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Researchers Developed 2D High‑κ Perovskites Dielectric Nanosheets for High Energy Density of Capacitors

10.10.2023
Reading Time: 4 mins read
A A

A research group led by Professor Minoru Osada at the Institute for Materials and Systems for Sustainability (IMaSS), Nagoya University in Japan, in collaboration with NIMS, has developed a nanosheet device with the highest energy storage performance yet seen. Their results were published in Nano Letters.

Innovations in energy storage technology are vital for the effective use of renewable energy and the mass production of electric vehicles. Current energy storage technology, such as lithium-ion batteries, has long charging times and problems, including electrolyte degradation, lifetime, and even unwanted ignition.

RelatedPosts

YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

TDK Announced Wide Frequency Automotive Wirewound POC Inductors

One promising alternative is dielectric energy storage capacitors. The basic structure of the capacitor is a sandwich-like film made of two metal electrodes separated by a solid dielectric film. Dielectrics are materials that store energy through a physical charge displacement mechanism called polarization. When an electric field is applied to the capacitor, the positive charges are attracted towards the negative electrode. The negative charges are attracted towards the positive electrode. Then, storing electrical energy depends on the polarization of the dielectric film by applying an external electric field.

“The dielectric capacitors have many advantages, such as a short charging time of only a few seconds, long life, and high-power density,” Osada said. However, the energy density of current dielectrics falls significantly short of meeting the increasing demands for electrical energy. Enhancing the energy density would help dielectric capacitors compete with other energy storage devices.

Since the energy stored in a dielectric capacitor is related to the amount of polarization, the key to achieving high energy density is to apply as high an electric field as possible to a high dielectric constant material. However, existing materials are limited by the amount of electric field they can handle.

To go beyond conventional dielectric research, the group used layers of nanosheets made of calcium, sodium, niobium, and oxygen with a perovskite crystal structure. “The perovskite structure is known as the best structure for ferroelectrics, as it has excellent dielectric properties such as high polarization,” Osada explains. “We found that by using this property, a high electric field could be applied to dielectric materials with high polarization and converted into electrostatic energy without loss, achieving the highest energy density ever recorded.”

The findings of the research group confirmed that nanosheet dielectric capacitors achieved a 1-2 orders of magnitude higher energy density while maintaining the same high output density. Excitingly, the nanosheet-based dielectric capacitor achieved a high energy density that maintained its stability over multiple cycles of use and was stable even at high temperatures up to 300°C.

“This achievement provides new design guidelines for the development of dielectric capacitors and is expected to apply to all-solid-state energy storage devices that take advantage of the nanosheet’s features of high energy density, high power density, short charging time of as little as a few seconds, long life, and high temperature stability,” Osada said. “Dielectric capacitors possess the ability to release stored energy in an extremely short time and create an intense pulsed voltage or current. These features are useful in many pulsed-discharge and power electronic applications. In addition to hybrid electric vehicles, they would also be useful in high-power accelerators and high-power microwave devices.”

Abstract

Dielectric capacitors have greater power densities than batteries, and, unlike batteries, they do not utilize chemical reactions during cycling. Thus, they can become ideal, safe energy storage devices. However, dielectric capacitors yield rather low energy densities compared with other energy storage devices such as batteries and supercapacitors. Here, we present a rational approach for designing ultrahigh energy storage capacitors using two-dimensional (2D) high-κ dielectric perovskites (Ca2Nam–3NbmO3m+1; m = 3–6). Individual Ca2Nam–3NbmO3m+1 nanosheets exhibit an ultrahigh dielectric strength (638–1195 MV m–1) even in the monolayer form, which exceeds those of conventional dielectric materials. Multilayer stacked nanosheet capacitors exhibit ultrahigh energy densities (174–272 J cm–3), high efficiencies (>90%), excellent reliability (>107 cycles), and temperature stability (−50–300 °C); the maximum energy density is much higher than those of conventional dielectric materials and even comparable to those of lithium-ion batteries. Enhancing the energy density may make dielectric capacitors more competitive with batteries.

Fabrication procedure for nanosheet capacitors. (a) Structure of layered perovskite (KCa2Nb3O10). (b) Structure of Ca2Nb3O10 nanosheet. (c) LB process for the fabrication of a monolayer film. (d) Monolayer film of Ca2Nb3O10 nanosheets on a SrRuO3 substrate. (e) Multilayer fabrication by repeated depositions. (f) Fabrication of Au top electrodes to form a nanocapacitor. Source

Journal Reference:

Hyung-Jun Kim, Shu Morita, Ki-Nam Byun, Yue Shi, Takaaki Taniguchi, Eisuke Yamamoto, Makoto Kobayashi, Yasuo Ebina, Takayoshi Sasaki, Minoru Osada. Ultrahigh Energy Storage in 2D High-κ Perovskites. Nano Letters, 2023; 23 (9): 3788 DOI: 10.1021/acs.nanolett.3c00079

Related

Source: Science Daily

Recent Posts

European Components Distribution (DMASS) Faces Continued Decline in Q2 2025

30.7.2025
2

Switched Capacitor Converter Explained

28.7.2025
8

Samsung Releases 1000V 1812 X7R 100nF MLCC for Electric Vehicles

28.7.2025
15

Samsung Electro-Mechanics Releases Molded MLCC Capacitors

28.7.2025
20

Researchers Demonstrated 200C Polymer Film Dielectric

28.7.2025
10

Researchers Demonstrated Zinc-Ion Based Photo-Supercapacitor

28.7.2025
9
Comparative display of a grain size and domain structure; b free energy; c P-E loops after high-entropy ceramics (HECs) and PGS design. source: Nature Communications  ISSN 2041-1723

Researchers Propose Novel MLCC Dielectric Design to Increase Energy Storage Capacity

24.7.2025
37

Samsung Electro-Mechanics Focuses MLCCs on AI servers and Automotive

22.7.2025
56

Modelithics Library Expands with 120 New Models

22.7.2025
4

Exxelia Offers High-Q RF Microwave Capacitors for High Reliability Applications

21.7.2025
32

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version