Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Stackpole Extends Voltage of High Temp Chip Resistors

    High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Stackpole Extends Voltage of High Temp Chip Resistors

    High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Researchers Developed BaTiO3 based MLCC Material with High Energy Density at High Temperature Range

21.1.2025
Reading Time: 4 mins read
A A

The article from Nature Communications by Chinese Researchers delves into the innovative development of high-entropy engineered BaTiO3-based ceramic capacitors, which have shown remarkable improvements in high-temperature energy storage performance.

Key points

RelatedPosts

Würth Elektronik Releases Push-Button and Main Switches

Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

Stackpole Extends Voltage of High Temp Chip Resistors

These capacitors achieved a significant recoverable energy density of 10.9 J/cm³ and an impressive energy efficiency of 93% at an applied electric field of 720 kV/cm. Notably, they maintain excellent energy storage capabilities across a wide temperature range of -50 to 260°C, with minimal variation and high cycling reliability up to 10^6 cycles at 450 kV/cm and 200°C. This study underscores the effectiveness of high-entropy engineering in creating high-performance dielectric capacitors for modern electrical applications.

The high-entropy design, characterized by a high configuration entropy and tolerance factor, contributed to the superior energy storage properties, including a high breakdown strength and low leakage current.

High-entropy 70BCT20-30BMZ ceramics exhibit ultrahigh cycling reliability and stable energy storage performance over a wide temperature range. This stability is attributed to the presence of high-dynamic nano polar regions (PNRs) that prevent the formation of large domains, leading to minimal dielectric loss and conductivity. The ceramics also demonstrate excellent high-temperature insulation properties, with a high activation energy for conductivity and a wide temperature range where efficiency exceeds 90%.

High-entropy ceramics, specifically (100-100x)BCT20-100xBMZ (x = 0 ~ 0.4), were synthesized and characterized, with 70BCT20-30BMZ exhibiting excellent energy storage performance at both room temperature and high temperatures.  This is attributed to the high configuration entropy, which induces large lattice distortion and random local fields, resulting in robust thermal and electrical stability.  The dynamic polarization nanoregions (PNRs) in the ceramics, revealed by in-situ characterizations, contribute to their superior high-temperature energy storage performance and cycling reliability.

Abstract

Ceramic capacitors with ultrahigh power density are crucial in modern electrical applications, especially under high-temperature conditions. However, the relatively low energy density limits their application scope and hinders device miniaturization and integration. In this work, we present a high-entropy BaTiO3-based relaxor ceramic with outstanding energy storage properties, achieving a substantial recoverable energy density of 10.9 J/cm3 and a superior energy efficiency of 93% at applied electric field of 720 kV/cm. Of particular importance is that the studied high-entropy composition exhibits excellent energy storage performance across a wide temperature range of −50 to 260 °C, with variation below 9%, additionally, it demonstrates great cycling reliability at 450 kV/cm and 200 °C up to 106cycles. Electrical and in-situ structural characterizations revealed that the high-entropy engineered local structures are highly stable under varying temperature and electric fields, leading to superior energy storage performance. This study provides a good paradigm of the efficacy of the high-entropy engineering for developing high-performance dielectric capacitors.

Summary

(100-100x)BCT20-100xBMZ (x = 0 ~ 0.4) ceramics were synthesized and characterized, with configuration entropy increasing with x. Thoroughly considering Wrecand η, high-entropy composition 70BCT20-30BMZ was selected for in-depth studies. This composition exhibits both a high Wrec of 10.9 J/cm3 and a high η of 93%, along with excellent cycling reliability at room temperature. Of particular importance is that 70BCT20-30BMZ ceramics also showed excellent high-temperature stability with ΔWrec < 9% and Δη < 5% over a broad temperature range of −50 °C to 260 °C, meanwhile exhibiting superior cycling reliability with minimal property degradation after cycling at 450 kV/cm and 200 °C. Electrical and in-situ characterizations revealed the PNRs in the ceramics are highly dynamic under varying temperatures and electric fields, attributed to the high-entropy engineering. This dynamic PNRs underscores the excellent high-temperature energy storage performance and high cycling reliability. This research highlights the significant potential of 70BCT20-30BMZ ceramics for high-temperature capacitors, and demonstrates that high-entropy design is an effective strategy in developing high-performance dielectric materials.

Read the full paper here: Kong, X., Yang, L., Meng, F. et al. High-entropy engineered BaTiO3-based ceramic capacitors with greatly enhanced high-temperature energy storage performance. Nat Commun 16, 885 (2025). https://doi.org/10.1038/s41467-025-56195-0

Related

Source: Nature Communications

Recent Posts

High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

12.8.2025
28

Radiation Tolerance of Tantalum and Ceramic Capacitors

8.8.2025
56

TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

7.8.2025
30

Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

6.8.2025
32

Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

6.8.2025
42

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

6.8.2025
38

How to Calculate the Output Capacitor for a Switching Power Supply

6.8.2025
34

Additive Manufacturing of Mn-Zn Ferrite Planar Inductors

4.8.2025
20

Evaluation and Modeling of Supercapacitors for Reliability of Lifetime Predictions

4.8.2025
29

Researchers Presents High-Performance Carbon-Based Supercapacitors

1.8.2025
27

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version