Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Wk 26 Electronics Supply Chain Digest

    Learn How Supercapacitors Enhance Power System in Knowles eBook

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Wk 26 Electronics Supply Chain Digest

    Learn How Supercapacitors Enhance Power System in Knowles eBook

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

12.5.2025
Reading Time: 3 mins read
A A

The study published in ACS Nano Journal (DOI: 10.1021/acsnano.5c00917) presents the design and fabrication of high-performance zinc-ion microcapacitors hybrid supercapacitors (ZIMCs) using 3D gold (Au) interdigitated electrodes (IDEs) as porous current collectors.

The 3D Au IDEs, fabricated using a dynamic bubbling electrodeposition technique, are loaded with zinc (Zn) as the anode and a hybrid activated carbon (AC) coated with PEDOT (AC-PEDOT) as the cathode.

RelatedPosts

TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

Sumida Announces New DC Common Mode Choke Coil Series

KYOCERA AVX Releases New 3dB Hybrid Couplers

The resulting ZIMCs exhibit enhanced charge storage performance, with the 3D Au Zn//AC-PEDOT configuration demonstrating a significant increase in CV area compared to planar counterparts.

The ongoing evolution of wearable and implantable technologies has heightened the demand for compact, high-performance energy storage devices. Zinc-ion microcapacitors (ZIMCs) have emerged as promising candidates by merging battery-type and capacitor-type charge storage mechanisms.

Despite their potential, challenges in electrode material optimization and device architecture have hindered their widespread adoption. This article explores an innovative approach leveraging porous 3D interdigitated current collectors and hybrid microcathodes to enhance ZIMC performance.

Key Points

  1. Advanced Electrode Architecture: Introduction of 3D gold interdigitated electrodes (3D Au IDEs) as porous current collectors.
  2. Hybrid Microcathodes: Utilization of zinc (Zn) anodes coupled with activated carbon coated with PEDOT (AC-PEDOT) cathodes.
  3. Fabrication Technique: Application of a microplotter technique for precise material deposition.
  4. Performance Metrics: Achieved areal capacity of 1.3 μAh/cm², peak areal energy of 1.11 μWh/cm², and peak areal power of 640 μW/cm².
  5. Enhanced Device Stability: Improved long-term cycling stability and superior charge storage capabilities.

Extended Summary

Zinc-ion microcapacitors (ZIMCs) are pivotal for powering next-generation compact electronics due to their hybrid energy storage mechanism, combining the benefits of high energy density from batteries and high power density from capacitors. Traditional planar electrode structures limit performance due to restricted ion transport pathways and suboptimal material utilization.

This study introduces a novel design employing 3D Au IDEs as porous current collectors. These collectors are fabricated using an advanced microplotter technique that allows precise layering and patterning on a ceramic substrate. The Zn anode and AC-PEDOT cathode are sequentially deposited onto these porous structures, enhancing the electrode-electrolyte interface and facilitating faster ion diffusion.

Electrochemical analyses, including cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) tests, reveal that the 3D Au IDE-based ZIMCs significantly outperform traditional planar designs. The devices exhibit a marked increase in both capacitive-controlled and diffusion-controlled charge storage contributions. Notably, the 3D Au Zn//AC-PEDOT ZIMCs demonstrate superior rate capability and energy density, attributed to the synergistic effects of the porous structure and hybrid electrode materials.

Long-term cycling tests confirm the device’s stability, with a capacity retention of up to 78% after 5000 cycles. The incorporation of PEDOT onto the AC cathode enhances pseudocapacitive behavior, further boosting overall performance. Electrochemical impedance spectroscopy (EIS) indicates reduced charge transfer resistance, affirming efficient charge transport within the 3D porous framework.

Conclusion

The integration of 3D porous Au IDEs with hybrid AC-PEDOT cathodes presents a transformative approach in micro-scale energy storage. This architecture not only optimizes charge storage capacity and cycling stability but also sets a new benchmark in the performance of ZIMCs. This work paves the way for the development of high-performance, compact energy storage solutions critical for future wearable and implantable electronic devices.

Read the full article:

Design of Porous 3D Interdigitated Current Collectors and Hybrid Microcathodes for Zn-Ion Microcapacitors, Yujia Fan, Nibagani Naresh, Yijia Zhu, Mingqing Wang, and Buddha Deka BoruahACS Nano 2025 19 (13), 13314-13324 DOI: 10.1021/acsnano.5c00917

Related

Source: ACSnano Journal

Recent Posts

YAGEO Releases First to Market 750V Aluminum Capacitors

30.6.2025
19

Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

30.6.2025
9

Learn How Supercapacitors Enhance Power System in Knowles eBook

30.6.2025
6

TDK Releases Industry First 1uF 100V X7R MLCCs in 1608 Case

27.6.2025
13

YAGEO Extends Lifetime of its Aluminum SMD Chip Capacitors to 5500hrs at 125C/Ur

27.6.2025
17

Murata Releases Worlds First 10µF/50V Automotive MLCC in 0805 Size

26.6.2025
44

Advancements and Applications of Switch Capacitor Power Converters

25.6.2025
30

Samsung Delivers Silicon Capacitors to Marwell AI Systems

24.6.2025
57

Smolteks CNF MIM Capacitor Break 1 µF/mm²

19.6.2025
39

Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

19.6.2025
23

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version