Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Resonators as Microwave Devices

15.10.2022
Reading Time: 5 mins read
A A

This blog post originated from Knowles Precision Devices, explores the basics of resonators as microwave devices and dive deeper into specifications for ceramic coaxial and dielectric resonators specifically.

Resonators are essential building blocks for bandpass filters as these components are designed to store frequency-dependent electric and magnetic energy.

RelatedPosts

Knowles Releases High Q Non-Magnetic X7R MLCCs for Medical Imaging

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

Knowles Releases Inductors for Mission-Critical RF Applications

A simple resonator, such as an LC resonator, can store the frequency-dependent electric energy in the capacitance (C) and magnetic energy in the inductance (L).

Resonant frequency of a resonator occurs when the energy stored in the electric field is equal to the energy stored in the magnetic field. In this post, we’re going to look more closely at two different types of resonators used in filters – coaxial ceramic and dielectric.

Figure 1. How electrical and magnetic energy travel in a coaxial transmission line; credit Knowles Precision Devices

Coaxial Ceramic Resonators

If you’ve ever had cable television service, then you have used a ceramic coaxial transmission line. The transmission line is constructed using a ceramic rectangular prism with a coaxial hole running through the center.

More specifically, the ceramic coaxial resonator is a transmission line resonator that operates in transverse electromagnetic (TEM) mode. TEM mode has both E- and H-field components at right angles to the z-direction and no signals in the direction of propagation as shown in Figure 1.

Each coaxial resonator transmission line is cut to a specific length based on the wavelength of the frequency of interest. To make the lines shorter, ceramics with specific dielectric constants are used to shrink the wavelength to the frequency of interest.

The dielectric used, length of the line, and metallization will dictate the performance at the frequency of interest. Coaxial resonators can be supplied as λ/4 resonators with one end fully metallized (i.e., shorted) and the other end open, fully metallized on both ends, or as λ/2 resonators with both ends open as shown in Figure 2.

Figure 2. How a signal will be impacted depending on the type of ceramic coaxial resonator added.; credit Knowles Precision Devices

Knowles Precision Devices design high Q ceramic resonators made with class I dielectrics to operate in UHF, VHF, L, S, and C bands and in microwave frequency ranges, covering a total frequency range of 300 MHz to 5 GHz. A sampling of Knowles ceramic coaxial resonators is shown in Figure 3.

Some of the other key features of our range of ceramic coaxial resonators that are built at our facilities in the US include the following:

  • Standard frequency tolerances ranging from 0.1 percent to 1.0 precent, but custom tolerances are available
  • Resonator profiles ranging from 2mm to 18mm with custom profiles available (Figure 4)
  • Excellent temperature stability
  • A thick film silver coating for excellent Q and solderability
  • Superior silver adhesion with pull strengths greater than 20 lbs
Figure 3. A variety of Knowles tabbed and no-tab ceramic coaxial resonators.
Figure 4. The range of Knowles coaxial resonators.sizes

For surface mount devices (SMDs) tabs, tables, or slotted no-tab configurations are available, with our tabless version eliminating solder reflow issues and tab misalignments. Our resonators are pre-tuned to your specified frequency with a choice of tolerances and screened to ensure customer specifications are met. However, the self-resonant frequency (SRF) can be tuned by removing the silver metallization at either the open end or the shortened of the resonator to either increase or decrease the SRF.

For filtering applications specifically, our coaxial resonators made with modern, high-performance ceramic dielectric materials are an excellent option for bandpass, band stop, narrowband, delay, and EMI filters. You can also learn more about ceramic coaxial resonator technology in this related blog post.

Dielectric Resonators

Dielectric resonators are a kind of ceramic cavity resonator that work by confining frequencies inside the resonator material as a result of an abrupt change in permittivity at the surface, causing RF waves to bounce back and forth between the sides. The Knowles Precision Devices DLI brand includes a family of patented high-Q ceramic cavity resonators that offer an ideal solution for high-performance, low-cost microwave or mmWave oscillators with frequencies ranging from <1GHz to >67GHz (Figure 5).

Figure 5. Q vs frequency for various resonator types; credit: Knowles Precision Devices

As shown in this graph, these resonators can reach much higher frequencies than alternative technologies. These resonators are also fully shielded and designed on our temperature stable, high dielectric constant ceramics. Some of the key specifications that can be built into our range of DLI brand ceramic dielectric resonators include the following:

  • High Q, (up to 2000) over the 2GHz to 40+GHz range, offering 200 to 500 percent better Q over comparable technologies
  • Low loss, very low phase noise oscillators
  • Coupling capacitors can be integrated and tailored to the desired tuning range of the oscillator inside the package
  • Fully shielded – no large expensive housings or tuning screws
  • Frequency stability to < 3ppm/°C
  • Ready for automated assembly
  • Do not exhibit aging characteristics
  • Q leverage improves with increasing frequencies
  • Do not out-gas due to density of the material
  • High reliability thin film gold metallization is employed and frequency tolerances as low as 0.1% are attainable.

Dielectric resonator designs can be customized for either solder-surface mount or chip and wire applications as well.

Related

Source: Knowles Precision Devices

Recent Posts

Overvoltage and Transient Protection for DC/DC Power Modules

13.11.2025
27

Choosing the Right Capacitor: The Importance of Accurate Measurements

12.11.2025
46

RF Inductors: Selection and Design Challenges for High-Frequency Circuits

10.11.2025
56

Transformer Safety IEC 61558 Standard

7.11.2025
33

ESR of Capacitors, Measurements and Applications

7.11.2025
113

3-Phase EMI Filter Design, Simulation, Calculation and Test

6.11.2025
79
Image credit: Samtec

How to Match the Right Connector with Protocol Requirements

6.11.2025
20

Transformer Design Optimization for Power Electronics Applications

4.11.2025
26

Microhardness — the Hidden Key to Understanding MnOx Cathode Quality in Tantalum Capacitors

3.11.2025
32

Upcoming Events

Dec 2
December 2 @ 12:00 - December 4 @ 14:15 CET

Microwave Packaging Technology

Dec 9
December 9 @ 12:00 - December 11 @ 14:15 EST

Space and Military Standards for Hybrids and RF Microwave Modules

Dec 10
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version