Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Exxelia Power Film Capacitors Support Critical Systems Across Various Industries

    H2-Assisted Thermal Treatment of Electrode Materials Increases Supercapacitors Energy Density

    Modelithics Releases Components Library v25.0 for Keysight 

    How to design a 60W Flyback Transformer

    Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

    Murata Releases 008004 High-Frequency SMD Chip Inductor

    Wk 19 Electronics Supply Chain Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Exxelia Power Film Capacitors Support Critical Systems Across Various Industries

    H2-Assisted Thermal Treatment of Electrode Materials Increases Supercapacitors Energy Density

    Modelithics Releases Components Library v25.0 for Keysight 

    How to design a 60W Flyback Transformer

    Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

    Murata Releases 008004 High-Frequency SMD Chip Inductor

    Wk 19 Electronics Supply Chain Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

RF Inductors Key Characteristics and Applications

17.4.2025
Reading Time: 4 mins read
A A

This article based on Knowles Precision Devices blog explains RF Inductors via their key characteristics and applications.

Inductors are a fundamental component in electronic circuits, but not all inductors perform equally across different frequency ranges.

RelatedPosts

Stacked Ceramic Capacitors Improve Efficiency in Power and RF Applications

Capacitors in Pulse Forming Network

Impedance Matching with RF LC Circuits 

At high frequencies, standard power inductors suffer from increased losses, reduced efficiency, and undesirable parasitic effects.

RF inductors, specifically designed for radio frequency and microwave applications, address these challenges by minimizing resistive losses, optimizing self-resonant frequency, and maintaining signal integrity.

Here, we examine the distinguishing characteristics of RF inductors, highlighting how they differ from other inductor types and why they are essential in high-frequency applications.

How Are RF Inductors Different from Other Inductors?

An RF inductor is a specialized passive electronic component designed to operate efficiently at radio frequencies and microwave frequencies. Unlike power inductors, which manage energy transfer and filtering in power supply applications, RF inductors are optimized for minimal energy loss and high signal integrity at high frequencies.

The primary difference between RF inductors and other inductors lies in:

  • Frequency Range: RF inductors function in the megahertz to gigahertz range while power inductors typically operate at lower frequencies.
  • Core Material: RF inductors often feature ceramic or air cores to minimize energy losses and ensure stability at high frequencies. Power inductors use ferrite cores to achieve higher inductance values.
  • Current Handling: Power inductors are designed to handle significant current loads whereas RF inductors prioritize maintaining signal integrity with minimal distortion.

Key Electrical Properties for Selecting RF Inductors

Selecting the right RF inductor requires an understanding of its key electrical properties, which includes:

  • Inductance Value: Determines the inductor’s ability to oppose changes in current
  • Self-Resonant Frequency (SRF): The point where the inductor’s parasitic capacitance cancels out its inductance defining the maximum effective operating frequency
  • Q-Factor: A measure of efficiency; higher values indicate lower energy losses and improved performance in filtering and tuning applications
  • DC Resistance (DCR): Lower DCR reduces power loss, which is critical in high frequency circuits
ApplicationInductanceMaximum DC Current (IDC)Self-Resonant Frequency (SRF)Quality Factor 
(Q)
DC Resistance (RDC)
High-frequency resonance circuits (RF)LowLowVery HighVery HighLow
EM coupling (Power)High–HighLowVery Low
Filter circuits (Power)HighHighHighLowVery Low
Switch-mode power supplies, DC/DC converters (Power)–HighMediumLowVery Low

RF inductors are essential in high-frequency applications, enabling critical functions in communication, medical, and defense systems. They are used in RF filters and oscillators to control frequency bands, amplifier biasing circuits for impedance matching, and MRI preamplifiers (Figure 1) to ensure low-noise signal processing. Additionally, they support radar and communication systems across VHF, UHF, and S-band frequencies and maintain signal integrity in RF test equipment.

Figure 1: In MRI preamplifiers, RF inductors are critical in low-noise signal amplification and maintaining signal integrity, which is essential for high-sensitivity imaging.

Related

Source: Knowles Precision Devices

Recent Posts

Modelithics Releases Components Library v25.0 for Keysight 

12.5.2025
11

How to design a 60W Flyback Transformer

12.5.2025
12

Murata Releases 008004 High-Frequency SMD Chip Inductor

12.5.2025
11

Modeling and Simulation of Leakage Inductance

9.5.2025
11

Power Inductor Considerations for AI High Power Computing – Vishay Video

9.5.2025
23

TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

9.5.2025
12

KYOCERA AVX Releases Compact High-Directivity Couplers

7.5.2025
22

YAGEO Releases High Current SMD Common Mode Choke With Shape Core Construction

5.5.2025
25

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
54

Tariffs Crush Sales Sentiment in April 2025 ECST Results

5.5.2025
71

Upcoming Events

May 14
11:00 - 12:00 CEST

Reliable RIGID.flex PCBs for Critical Applications – Made in Europe

May 14
17:00 - 17:30 CEST

Calculating Foil Winding Losses with AI

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version