Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    2025 Annual Capacitor Technology Dossier

    Panasonic High Precision Chip Resistors Bridge Gap Between Thin and Thick Technology

    ROHM Extends 2012 Shunt Resistors Power Rating up to 1.25 W

    January 2026 Interconnect, Passives and Electromechanical Components Market Insights

    Passive Components in Quantum Computing

    0603 Automotive Chip Varistors as TVS Diode Replacements, TDK Tech Note

    Miniaturization of MLCCs and Electrolytics, KAVX Tech Chat

    Exxelia Offers Custom Naval Transformers and Inductors

    Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    2025 Annual Capacitor Technology Dossier

    Panasonic High Precision Chip Resistors Bridge Gap Between Thin and Thick Technology

    ROHM Extends 2012 Shunt Resistors Power Rating up to 1.25 W

    January 2026 Interconnect, Passives and Electromechanical Components Market Insights

    Passive Components in Quantum Computing

    0603 Automotive Chip Varistors as TVS Diode Replacements, TDK Tech Note

    Miniaturization of MLCCs and Electrolytics, KAVX Tech Chat

    Exxelia Offers Custom Naval Transformers and Inductors

    Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Rohm Announce New LTR50 Series of Wide Terminal Low-Ohmic High Power Thick-Film Chip Resistors

13.12.2018
Reading Time: 2 mins read
A A

Source: eBOM news

ROHM has recently announced the availability of a new lineup of high power wide terminal thick-film chip resistors (10-910mΩ) ideal for current detection in a variety of applications, including inverters, AC, and energy-efficient appliances.

RelatedPosts

2025 Annual Capacitor Technology Dossier

Panasonic High Precision Chip Resistors Bridge Gap Between Thin and Thick Technology

ROHM Extends 2012 Shunt Resistors Power Rating up to 1.25 W

A thorough review of the resistive material allowed ROHM to improve rated power to 2W in the compact 2550 size (2.5×5.0mm, t=0.55mm) – 4x higher than conventional short-terminal types – contributing to improved energy savings and greater miniaturization in high power applications. The new family is available in 48 values. In addition, optimization of the element structure makes it possible to achieve best-in-class TCR (temperature coefficient of resistance) characteristics among wide terminal thick-film chip resistors. The result is minimal resistance fluctuation due to temperature changes, enabling high accuracy current detection.

Recent years have seen a marked increase in the number of circuits used to monitor current in a variety of applications, spurring demand for current detection resistors for controlling and managing current. This significant growth in embedded components requires compact, high power resistors.

ROHM continues to lead the industry in product development, beginning with the world’s first chip resistors. For applications demanding reliability, ROHM offers resistors that provide features such as high power, anti-surge, and sulfuration resistance that have been well-received in the industry. Adding this new lineup of low-ohmic resistors enables support for a wider variety of applications. Going forward, ROHM will continue to leverage the latest, proprietary technologies and expertise to expand its industry-leading portfolio with products optimized to customer needs.

Figure 1. Low Ohmic Current Detection Resistor Selection Chart 

 

Figure 2

Key Features
1. Superior temperature coefficient of resistance (TCR) ensures high accuracy current detection

Generally, TCR increases as the resistance decreases, but optimizing the resistive element structure allowed ROHM to achieve class-leading TCR characteristics. For example, in the case of 100mΩ, the LTR50 series delivers a TCR of ±100ppm/°C, ensuring stable resistance.
(see figure 2)

2. 4x higher rated power than conventional products contributes to greater space savings
A thorough review of the resistive material made it possible to improve rated power to 2W in the compact 2550 size (2.5×5.0mm, t=0.55mm) — 4x higher ROHM’s conventional MCR50 low-ohmic series (0.5W). This allows customers to reduce set size by using smaller resistors.

Terminology
Temperature Coefficient of Resistance (TCR)

The internal resistance of many materials changes in response to variations in temperature. This rate of change is called the temperature coefficient of resistance, or TCR. The lower this value is, the less the resistance change due to a change in ambient temperature, making it possible to suppress variations during device operation.

 

Related

Recent Posts

Panasonic High Precision Chip Resistors Bridge Gap Between Thin and Thick Technology

23.1.2026
13

ROHM Extends 2012 Shunt Resistors Power Rating up to 1.25 W

23.1.2026
11

Passive Components in Quantum Computing

22.1.2026
58

Conductive Polymer Capacitor Market and Design‑In Guide to 2035

20.1.2026
102

TDK Releases High Performance 105C DC Link Film Capacitors

19.1.2026
54

YAGEO Offers Automotive MOVs for EV and AI power

19.1.2026
31

Vishay Extends Aluminum Capacitors Rating Up to 600 V for DC Links

15.1.2026
36

Würth Elektronik Introduces Product Navigator for Passive Components

14.1.2026
79

Panasonic Passive Components for Reliable Robotic Arms

14.1.2026
100

Upcoming Events

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

Mar 21
All day

PSMA Capacitor Workshop 2026

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version