Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

    Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

    Vishay Releases High Saturation 180C Automotive Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

    Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

    Vishay Releases High Saturation 180C Automotive Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Safety Considerations for Acetonitrile SuperCapacitors

6.11.2023
Reading Time: 6 mins read
A A

This article written by Akihiro Kado, KYOCERA-AVX Corporation provides insight into safety of acetonitrile supercapacitor types.

Supercapacitor Overview

Advancements in SuperCapacitor design and manufacturing have made them a mainstay component in power supplies and backup systems that require high power density output.

RelatedPosts

KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

Radiation Tolerance of Tantalum and Ceramic Capacitors

KYOCERA AVX Releases 600MHz Band71 Compact SAW Duplexer

SuperCapacitors have now become commonplace components in many areas of modern electronic design. They bridge an important gap between batteries – used for high density energy storage, and electronic capacitors – for local power supply stabilization and decoupling.

SuperCapacitors offer the unique ability to provide large amounts of power for short periods of time. For this reason, they have found a home in applications such as electric vehicles, uninterruptible power supplies, and data storage devices. A wide variety of SuperCapacitor structures and materials have been developed, and two of the most common are based on acetonitrile and propylene carbonate solvents.

Figure 1: SuperCapacitor schematic (courtesy of KYOCERA AVX)

Unfortunately, even with enhanced performance, acetonitrile based SuperCapacitors have suffered slow adoption due to the lack of safety and reliability data. This is especially true in the automotive industry and other applications where rigorous safety requirements are mandated across extremely harsh environmental conditions.

Acetonitrile Supercapacitor Technology

As shown in Figure 1, the SuperCapacitor structure depends on two electrolyte layers separated by a porous electrode. A Helmholtz double layer, also called the electric double layer (EDL), forms at the electrolyte-electrode interface resulting in extremely high capacitance.

These electrolyte layers require a carefully chosen base solvent chemistry. Compared to traditional solvents such as propylene carbonate, acetonitrile enables high performance at much lower temperatures due to its inherently lower viscosity.

This enhances electrical series resistance (ESR), and, as shown in Figure 2, can outperform traditional capacitors by a factor of two at -40 ℃. In addition to low ESR across temperature, acetonitrile SuperCapacitors exhibit a low leakage current rate, therefore preventing self-discharge over time. As shown in Figure 3, after 24 hours the SuperCapacitor retains much of its charge even at elevated temperatures.

Figure 2: ESR vs Temperature of acetonitrile and propylene carbonate SuperCapacitors
Figure 3: Self-discharge over time of acetonitrile SuperCapacitor

Acetonitrile Safety Testing

Figure 4: SuperCapacitor “nail test”

KYOCERA AVX has conducted an extensive study of acetonitrile SuperCapacitor safety performance. Several notable tests and results are presented here to demonstrate the applicability of these devices in safety critical applications.

The first test involves puncturing the capacitor with a conductive object, something that could easily occur during an automobile crash for example. As shown in Figure 4, a nail was driven into a fully charged acetonitrile SuperCapacitor while monitoring its voltage. The voltage instantly drops to zero and the capacitor fails into an open-circuit, high impedance load. Similarly, during a short circuit of the terminals while fully charged, the capacitor exhibited no swelling or venting.

High temperature operation beyond the normal operating range is also an area of focus when considering safety. A representative acetonitrile capacitor, part number SCCT35B226SRB, was chosen for the test with a standard operating range of -40℃ to 85℃. It was charged to 2.3V and ran for 200 hours at 105℃. As shown in Figure 5, the capacitor remained stable and exhibited no precipitous reduction in capacity or increase in ESR.

High humidity also greatly impacts electronic reliability and can introduce unforeseen safety hazards. Another acetonitrile SuperCapacitor, part number SCCU25B256SRB, was chosen for 4,000 hours of exposure at 85% relative humidity and 85℃ temperature. The part was charged to 1.9V, and as can be seen in the Figure 6, it remained within acceptable limits for capacitance and ESR.

The same part number was also charged to 2.3V and exposed for 6,000 hours at 90% relative humidity and 60℃ temperature. Similarly, as presented below, the capacitance and ESR remained within the acceptable limits for the duration of the test. This is shown in Figure 7.

Figure 5: Capacitance and ESR over time at abnormally high temperatures.
Figure 6: Capacitance and ESR trends over time at 85% humidity.
Figure 7: Capacitance and ESR trends over time at 90% relative humidity.

KYOCERA AVX Supercapacitors

Thorough, comprehensive testing across the industry continues to demonstrate the fact that acetonitrile SuperCapacitors can pass the same level of safety testing as more traditional propylene carbonate devices.

KYOCERA AVX offers these SuperCapacitors in both the SCC and SCM product series, both featuring UL 810A certification.

Figure 8 shows two series of ACN based capacitors along with their maximum capacitance and voltage ratings. Used by themselves or in conjunction with primary or secondary batteries, they provide extended back up time, longer battery life, and provide instantaneous power pulses as needed. Moreover, their acetonitrile construction offers significant improvements in ESR, especially in extremely low temperature applications.

Figure 8: KYOCERA AVX capacitor specifications

Related

Source: KYOCERA AVX

Recent Posts

KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

8.8.2025
3

Radiation Tolerance of Tantalum and Ceramic Capacitors

8.8.2025
38

TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

7.8.2025
15

Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

6.8.2025
19

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

6.8.2025
25

How to Calculate the Output Capacitor for a Switching Power Supply

6.8.2025
23

Evaluation and Modeling of Supercapacitors for Reliability of Lifetime Predictions

4.8.2025
22

Researchers Presents High-Performance Carbon-Based Supercapacitors

1.8.2025
25

Modelithics Announces v25.5 of the COMPLETE+3D Library for Ansys HFSS

1.8.2025
5

PCNS 2025 Final Program Announced!

4.8.2025
64

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version