Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Skeleton Supercapacitors Power New IndyCar Hybrid Racing

29.7.2024
Reading Time: 3 mins read
A A

Skeleton’s cutting-edge supercapacitors are now integrated into the NTT IndyCar Series innovative Energy Recovery System (ERS). All racecars are equipped with this new hybrid system, which made its competition debut at the Honda Indy 200 at Mid-Ohio on July 7th, 2024.

Skeleton Technologies has designed and manufactured the high-performance supercapacitors commissioned by Honda Racing Corporation USA (HRC US) as the new Energy Storage System (ESS), a component of the overall ERS, which also incorporates a Motor Generator Unit. HRC US helped manage this collaborative effort among industry leaders enabling IndyCar participants to embrace hybrid racing technologies. 

RelatedPosts

Skeleton Opens SuperBattery Factory in Finland 

Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

Skeleton Supercapacitors Contribute to Sustainable AI

David Arsenault, Senior Vice-President of Business Development at Skeleton Technologies, says: “We are excited to collaborate with Honda Racing Corporation USA and play a pivotal role in this ground-breaking development in the NTT IndyCar Series. Motorsports are more than just about speed, precision and a thrilling spectacle. They set a standard for technological innovation in the automotive industry. This collaboration with HRC US and other industry leaders highlights our commitment to advancing energy storage technology and pushing the boundaries of performance in motorsports. We now look forward to continuing our partnership with HRC USA and contributing to the evolution of hybrid racing technology.”

This new technology opens a new era of NTT IndyCar Series electrified hybrid racing, promising enhanced efficiency and power. By leveraging cutting-edge supercapacitor technology, the ERS optimizes energy capture and deployment, providing a substantial performance boost while maintaining the integrity and footprint of the traditional powertrain. 

David Salters, President of Honda Racing Corporation USA explains: “We have had a superb collaboration with Skeleton. Using Skeleton’s advanced supercapacitor technology, we have been able to test out something novel and unique, which is what racing is for. We are also particularly glad we executed this project in a short time. There are many other promising technologies that Skeleton is working on, so we are looking forward to continuing this collaboration and innovate further together.”

The Energy Storage System is composed of 20 supercapacitors developed and supplied by Skeleton Technologies. These supercapacitors were specifically chosen for their unparalleled ability to capture and deploy energy rapidly, which is crucial in high-speed racing environments. The ESS can fully charge and discharge in approximately 4.5 seconds, providing drivers with an additional 60 horsepower to enhance their performance on the track. This rapid energy transfer capability not only improves the vehicle’s acceleration and power during critical moments but also contributes to more consistent and sustainable performance throughout the race. 

The ESS developed by HRC US is one of the major components of the energy recovery system, alongside the Motor Generator Unit, produced by EMPEL in collaboration with Chevrolet and Ilmor, the DC/DC converter, produced by BrightLoop, and the voltage control device. These components work together with the existing engine control unit provided by McLaren Applied, ensuring optimal performance and reliability. 

The innovative design of the ERS captures energy typically lost during braking, storing it efficiently within the supercapacitors. This stored energy is then available for drivers to deploy manually, providing a powerful boost during crucial moments such as overtaking.

Additionally, the system’s ability to start or restart the car autonomously without external assistance not only reduces race interruptions but also minimizes the risks associated with trackside assistance. This feature helped prevent a caution in the closing stages of the Honda Indy 200 at Mid-Ohio when a driver was able to fire up his car again with the hybrid – instead of the previous set-up of waiting for the safety team to arrive, which in turn would require a caution. This episode underscores the dual benefits of the ERS: enhanced competitive performance and improved safety standards in high-stakes racing environments.

Related

Source: Skeleton Technologies

Recent Posts

Choosing the Right Capacitor: The Importance of Accurate Measurements

12.11.2025
37

Skeleton Opens SuperBattery Factory in Finland 

12.11.2025
15

Murata Expands High Rel NTC Thermistors in Compact 0603M Size

12.11.2025
7

ESR of Capacitors, Measurements and Applications

7.11.2025
95

Murata Christophe Pottier Appointed President of EPCIA

7.11.2025
22

3-Phase EMI Filter Design, Simulation, Calculation and Test

6.11.2025
76

Smoltek CNF-MIM Capacitors Pass 1,000h Reliability Test

6.11.2025
14

Capacitor Lead Times: October 2025

6.11.2025
90

Paumanok Unveils Aluminum Capacitor Foils World Markets Study 2025-2030

6.11.2025
17

Upcoming Events

Dec 2
December 2 @ 12:00 - December 4 @ 14:15 CET

Microwave Packaging Technology

Dec 9
December 9 @ 12:00 - December 11 @ 14:15 EST

Space and Military Standards for Hybrids and RF Microwave Modules

Dec 10
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version