Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Wk 22 Electronics Supply Chain Digest

    Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

    Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

    Bourns Releases New Current Transformer

    Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

    VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

    binder Offers Wide Range of M12 Panel Mount Connectors

    Bourns Releases New Shielded Power Inductors for DDR5

    Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Wk 22 Electronics Supply Chain Digest

    Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

    Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

    Bourns Releases New Current Transformer

    Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

    VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

    binder Offers Wide Range of M12 Panel Mount Connectors

    Bourns Releases New Shielded Power Inductors for DDR5

    Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Skeleton to Launch Fully Automated Supercapacitor Production Line

18.1.2023
Reading Time: 3 mins read
A A

Skeleton Technologies announced building of the world’s largest and most modern supercapacitor factory in Saxony, Germany.

The first-of-its-kind Leipzig Superfactory will include the inaugural fully automated supercapacitor production line. 

RelatedPosts

Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

Skeleton Supercapacitors Contribute to Sustainable AI

Skeleton is Opening a New Research and Development Center in Finland 

With the expected Start-Of-Production in 2024, construction is already underway for Leipzig Superfactory. Designed in cooperation with Siemens Digital Industries, it will increase Skeleton’s production capacity 40-fold, allowing us to meet the increasing demand from electrification and decarbonization projects globally.

Skeleton Technologies’ objective is to make its energy storage devices more affordable. The economies of scale provided by this new technology, combined with the use of our patented Curved Graphene raw material, will dramatically drive the production costs down, boosting the competitiveness of supercapacitors as the key enabling technology for the future of electrification. After the completion of the 5-year scale-up project, production costs are expected to lower by almost 90%.

Leading the automation of supercapacitor production

“Globally, only islands of automation are used at supercapacitor production sites. While the individual processes are automated, these islands of automation are separated by manual assembly and transport,” said Julius Beck, Senior Automation Engineer at Skeleton. Despite sharing commonalities with other energy storage devices like lithium-ion batteries, supercapacitor production is not as evolved due to its youth and around 50 times smaller market size.

“Globally, only islands of automation are used at supercapacitor production sites.”

Supercapacitor production consists of five main steps from electrode coating to cell testing. Let’s look at the first step to get a better understanding of the difference between semi-automated and automated production. 

  1. Electrode manufacturing (mixing, coating, calendering, slitting)
  2. Jellyroll winding 
  3. Roll-to-Cell assembly  
  4. Cell filling and closing 
  5. Cell testing 

“Current electrode production is accomplished by a partially automated coating line that gives feedback on product quality, but still requires permanent operator attention as well as diligent supervision of the product tracking system,” explains Skeleton’s Scale Up Equipment Launch Manager Taavi Pärtin. In addition, some quality tests must be conducted off-line, delaying feedback and corrective actions to the production operations.  

The electrode is only coated on one side and rolls must be brought back to the beginning of the line to be coated from the second side. In fully automated cell production, electrode production will still be based on wet coating techniques, but the implementation of a novel coating technique enables double-side coating that would half the throughput time per meter. 

According to Julius Beck, the automated line will utilize machine learning and in a later stage artificial intelligence to link quality control systems (coating thickness measurement by β-rays, coating width control by high-quality imaging techniques, humidity sensing by IR sensors) with production process control adjustments (coating head settings, drying oven settings). This link will result in automatic corrections, superior quality, and a more efficient production. 

In electrode calendaring and slitting, the respective electrode rolls will be recognized by radio-frequency identification (RFID) technology, automatically adjusting machine settings as needed and leaving a clearly traceable product through all steps. Hand-over of slit electrodes to cell production processes will be machine directed with the option of being fully automated. 

“All manual inspection steps are removed and replaced with automatic processes.”

Cell assembly, filling and electrical testing production steps are fully automatic and do not require operator influence. “A big upgrade from the current cell production is that all manual inspection steps are removed and replaced with automatic processes that are faster and more reliable,” adds Taavi Pärtin.

Related

Source: Skeleton Technologies

Recent Posts

Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

30.5.2025
20

Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

29.5.2025
35

VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

28.5.2025
61

Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

26.5.2025
31

Samsung Electro-Mechanics Releases High-Capacitance MLCCs for AI Server Applications

21.5.2025
60

Capacitor Ripple Current Testing: A Design Consideration

21.5.2025
73

Developing Low Inductance Film Capacitor using Bode 100 Analyzer

15.5.2025
54

YAGEO Extends Rectangular Aluminum Electrolytic Capacitor Family

15.5.2025
78

Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

14.5.2025
74

Exxelia Power Film Capacitors Support Critical Systems Across Various Industries

13.5.2025
32

Upcoming Events

Jun 4
11:00 - 12:00 CEST

Würth Elektronik PCB Production in Asia

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Tariffs Crush Sales Sentiment in April 2025 ECST Results

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

    0 shares
    Share 0 Tweet 0
  • Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version