Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    YAGEO Unveils Next Gen BMS Isolation Transformers

    Littelfuse Compact Tactile Switch Offers Low-Noise Switching and Dust Protection

    Murata Announces Mass Manufacturing of World’s First 0402 47µF MLCC

    Bourns Releases SMD Chip High-Power Metal Strip Current Sense Resistors in 2010 Case

    Würth Elektronik Releases High-Frequency Connectors for Antenna Cables

    Murata Releases First High-Frequency XBAR Filter for Next-Gen Networks

    Vishay NTC Immersion Thermistor Delivers Fast Response in Liquid Cooled Automotive Systems

    Wk 27 Electronics Supply Chain Digest

    VINATech Supercapacitors Enhance Automotive Safety with Reliable E-Latch Emergency Power

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    YAGEO Unveils Next Gen BMS Isolation Transformers

    Littelfuse Compact Tactile Switch Offers Low-Noise Switching and Dust Protection

    Murata Announces Mass Manufacturing of World’s First 0402 47µF MLCC

    Bourns Releases SMD Chip High-Power Metal Strip Current Sense Resistors in 2010 Case

    Würth Elektronik Releases High-Frequency Connectors for Antenna Cables

    Murata Releases First High-Frequency XBAR Filter for Next-Gen Networks

    Vishay NTC Immersion Thermistor Delivers Fast Response in Liquid Cooled Automotive Systems

    Wk 27 Electronics Supply Chain Digest

    VINATech Supercapacitors Enhance Automotive Safety with Reliable E-Latch Emergency Power

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Sumida Metal Hybrid Inductor: CDMT Series

8.11.2016
Reading Time: 3 mins read
A A

source: Sumida news

Sumida has expanded its lineup of Metal Hybrid Inductors, known as the CDMT series, which is made of two kinds of metal materials. The existing type under the CDMT series is CDMT40D20 (4.3mm x 4.3mm x H 2.1mm), CDMT40D30 (4.3mm x 4.3mm x H 3.1mm) and CDMT40D40 (4.3mm x 4.3mm x H 4.1mm) are newly added as an expansion.

RelatedPosts

YAGEO Unveils Next Gen BMS Isolation Transformers

Littelfuse Compact Tactile Switch Offers Low-Noise Switching and Dust Protection

Murata Announces Mass Manufacturing of World’s First 0402 47µF MLCC

 

Along with the miniaturization trend of consumer electronics devices such as smart phones and tablet PCs, longer battery life is expected by consumers. High efficiency and low loss power circuit are needed for industrial equipments such as servers and telecommunications base stations. Sumida has developed high efficiency and low loss inductors which best suit the power supply circuits for these types of products.

Through the use of a newly developed metal composite material in the mold structure, the CDMT40D30 and CDMT40D40 have outstanding electrical performance and shielding properties, they also reflect minimum loss in performance when compared with other inductors of the same size. Thus, CDMT series including the new addition is suitable for various kinds of electronic devices.

Key Features

  • Dimension:
    CDMT40D30  4.3 x 4.3 x H 3.1mm (Max.)
    CDMT40D40  4.3 x 4.3 x H 4.1mm (Max.)
  • Weight:
    CDMT40D30 0.28g (Ref.)
    CDMT40D40 0.37g (Ref.)
  • Halogen-free
  • Operating temperature range: -40°C to +125°C  (Not including coil’s self temperature rise)

Applications

  • Telecommunication base stations, servers, SSDs, and other low profile high current applications

Main Electrical Characteristics: CDMT40D30

Part Name Inductance
[within](µH) ※1
D.C.R. (mΩ)
Typ. (Max.)
Saturation Current at
20°C (A) ※2
Temperature Rise Currrent
(A) ※3
*4 *5
CDMT40D30HF-3R3NC 3.30 ±30% 23.0 (25.3)  5.0 4.30 6.60
CDMT40D30HF-4R7NC 4.70 ±30% 37.0 (40.7) 4.0  3.60 5.10
CDMT40D30HF-6R8NC 6.80 ±30% 62.0 (68.2) 3.2 2.70 3.90

 

Main Electrical Characteristics: CDMT40D40

Part Name Inductance
[within](µH) ※1
D.C.R. (mΩ)
Typ. (Max.)
直流重畳許容電流で20°C (A) *2 温度上昇電流
(A) *3
*4 *5
CDMT40D40HF-8R2NC 8.20 ±30% 54.0 (59.4) 3.20 2.80 3.40
CDMT40D40HF-100NC 10.0 ±30% 80.0 (88.0) 2.80 2.30 3.10
CDMT40D40HF-150NC 15.0 ±30% 107 (118) 2.50 1.95 2.80


*1 Measuring frequency at 100KHZ 0.1V
*2 Saturation current: This indicates the actual value of D.C. current when the inductance becomes 30% lower than its nominal value.
*3 Temperature rise current: The actual value of D.C. current when the temperature of coil becomes △T=40°C (Ta=20°C).
*4 Measurement condition: Irms testing was performed by a product in 25°C ambient.
*5 Measurement condition: Irms testing was performed on copper traces in 25°C ambient.
** Discharge static electricity before handling this coil. Take the static electricity measures to prevent deterioration of electric characteristics.

Production Stage
Mass Production: December 2016

Related

Recent Posts

YAGEO Unveils Next Gen BMS Isolation Transformers

10.7.2025
1

Exxelia Unveils Advanced Components for the Medical Device Industry

9.7.2025
43

TDK Increases Current Ratings of Automotive Thin-Film Power Inductors

1.7.2025
24

Sumida Announces New DC Common Mode Choke Coil Series

1.7.2025
15

YAGEO Expands One Turn Inductors for AI and High-Efficiency Power Applications

27.6.2025
44

Würth Elektronik Extends High Saturation Flat-Wire Power Inductors Line

26.6.2025
24

Vishay Expands Automotive High Frequency Thin Film Chip Resistors

26.6.2025
28

Advancements and Applications of Switch Capacitor Power Converters

25.6.2025
39

Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

24.6.2025
32

Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

19.6.2025
29

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version