Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

    Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

    Vishay Releases High Saturation 180C Automotive Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

    Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

    Vishay Releases High Saturation 180C Automotive Inductors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Sumida Metal Hybrid Inductor: CDMT Series

8.11.2016
Reading Time: 3 mins read
A A

source: Sumida news

Sumida has expanded its lineup of Metal Hybrid Inductors, known as the CDMT series, which is made of two kinds of metal materials. The existing type under the CDMT series is CDMT40D20 (4.3mm x 4.3mm x H 2.1mm), CDMT40D30 (4.3mm x 4.3mm x H 3.1mm) and CDMT40D40 (4.3mm x 4.3mm x H 4.1mm) are newly added as an expansion.

RelatedPosts

Bourns Releases High Power High Ripple Chokes

KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

Radiation Tolerance of Tantalum and Ceramic Capacitors

 

Along with the miniaturization trend of consumer electronics devices such as smart phones and tablet PCs, longer battery life is expected by consumers. High efficiency and low loss power circuit are needed for industrial equipments such as servers and telecommunications base stations. Sumida has developed high efficiency and low loss inductors which best suit the power supply circuits for these types of products.

Through the use of a newly developed metal composite material in the mold structure, the CDMT40D30 and CDMT40D40 have outstanding electrical performance and shielding properties, they also reflect minimum loss in performance when compared with other inductors of the same size. Thus, CDMT series including the new addition is suitable for various kinds of electronic devices.

Key Features

  • Dimension:
    CDMT40D30  4.3 x 4.3 x H 3.1mm (Max.)
    CDMT40D40  4.3 x 4.3 x H 4.1mm (Max.)
  • Weight:
    CDMT40D30 0.28g (Ref.)
    CDMT40D40 0.37g (Ref.)
  • Halogen-free
  • Operating temperature range: -40°C to +125°C  (Not including coil’s self temperature rise)

Applications

  • Telecommunication base stations, servers, SSDs, and other low profile high current applications

Main Electrical Characteristics: CDMT40D30

Part Name Inductance
[within](µH) ※1
D.C.R. (mΩ)
Typ. (Max.)
Saturation Current at
20°C (A) ※2
Temperature Rise Currrent
(A) ※3
*4 *5
CDMT40D30HF-3R3NC 3.30 ±30% 23.0 (25.3)  5.0 4.30 6.60
CDMT40D30HF-4R7NC 4.70 ±30% 37.0 (40.7) 4.0  3.60 5.10
CDMT40D30HF-6R8NC 6.80 ±30% 62.0 (68.2) 3.2 2.70 3.90

 

Main Electrical Characteristics: CDMT40D40

Part Name Inductance
[within](µH) ※1
D.C.R. (mΩ)
Typ. (Max.)
直流重畳許容電流で20°C (A) *2 温度上昇電流
(A) *3
*4 *5
CDMT40D40HF-8R2NC 8.20 ±30% 54.0 (59.4) 3.20 2.80 3.40
CDMT40D40HF-100NC 10.0 ±30% 80.0 (88.0) 2.80 2.30 3.10
CDMT40D40HF-150NC 15.0 ±30% 107 (118) 2.50 1.95 2.80


*1 Measuring frequency at 100KHZ 0.1V
*2 Saturation current: This indicates the actual value of D.C. current when the inductance becomes 30% lower than its nominal value.
*3 Temperature rise current: The actual value of D.C. current when the temperature of coil becomes △T=40°C (Ta=20°C).
*4 Measurement condition: Irms testing was performed by a product in 25°C ambient.
*5 Measurement condition: Irms testing was performed on copper traces in 25°C ambient.
** Discharge static electricity before handling this coil. Take the static electricity measures to prevent deterioration of electric characteristics.

Production Stage
Mass Production: December 2016

Related

Recent Posts

Bourns Releases High Power High Ripple Chokes

8.8.2025
12

Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

6.8.2025
23

Vishay Releases High Saturation 180C Automotive Inductors

6.8.2025
11

Additive Manufacturing of Mn-Zn Ferrite Planar Inductors

4.8.2025
12

PCNS 2025 Final Program Announced!

4.8.2025
69

YAGEO Offers High-Performance Diplexers for Dual-Band Wi-Fi 6E/7Integration

30.7.2025
5

TDK Announced Wide Frequency Automotive Wirewound POC Inductors

30.7.2025
35

Bourns Announced Shielded Power Inductor with High Saturation and Low Radiation

30.7.2025
23

Würth Elektronik Expands MagI³C with Variable Step-Down Modules

30.7.2025
22

KYOCERA AVX Releases 600MHz Band71 Compact SAW Duplexer

30.7.2025
8

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version