Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    January 2026 Interconnect, Passives and Electromechanical Components Market Insights

    Passive Components in Quantum Computing

    0603 Automotive Chip Varistors as TVS Diode Replacements, TDK Tech Note

    Miniaturization of MLCCs and Electrolytics, KAVX Tech Chat

    Exxelia Offers Custom Naval Transformers and Inductors

    Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

    Conductive Polymer Capacitor Market and Design‑In Guide to 2035

    TDK Releases High Performance 105C DC Link Film Capacitors

    YAGEO Offers Automotive MOVs for EV and AI power

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    January 2026 Interconnect, Passives and Electromechanical Components Market Insights

    Passive Components in Quantum Computing

    0603 Automotive Chip Varistors as TVS Diode Replacements, TDK Tech Note

    Miniaturization of MLCCs and Electrolytics, KAVX Tech Chat

    Exxelia Offers Custom Naval Transformers and Inductors

    Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

    Conductive Polymer Capacitor Market and Design‑In Guide to 2035

    TDK Releases High Performance 105C DC Link Film Capacitors

    YAGEO Offers Automotive MOVs for EV and AI power

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

TAIYO YUDEN Reduces the Thickness of 1005-Size Three-Terminal MLCC by 23%

26.3.2019
Reading Time: 2 mins read
A A

Source: Taiyo Yuden news

Taiyo Yuden has announced the launch of its 1005-size three terminal multilayer ceramic MLCC capacitor A3K105BBJ106MR (1.0×0.5×0.5mm, with height as the maximum value, capacitance of 10μF, and rated voltage of 4.0V). Three-terminal multilayer ceramic capacitors, which have a lower ESL than the popular two-terminal multilayer ceramic capacitors, can reduce impedance in the high frequency range and contribute to the stable operation of ICs that are driven at high speed.
The thickness of the new ceramic capacitor has been reduced by approximately 23% compared to our conventional product, A3K105KBJ106MV (1.0×0.5×0.65mm, with height as the maximum value), contributing to the further reduction in thickness of small, thin digital devices.

RelatedPosts

January 2026 Interconnect, Passives and Electromechanical Components Market Insights

Passive Components in Quantum Computing

0603 Automotive Chip Varistors as TVS Diode Replacements, TDK Tech Note

This product is to be used as a decoupling capacitor for power supply lines for ICs in response to demand for smaller and thinner devices, such as IoT-related devices, typified by smartphones and wearable devices.

Production of this multilayer ceramic capacitor will commence at the company’s Tamamura Plant (Tamamura-machi, Sawa-gun, Gunma Prefecture, Japan) starting from March 2019 at a production rate of five million units per month.

Technology background

Multilayer ceramic capacitors are placed near ICs mounted in smartphones or wearable devices for the purpose of decoupling. As devices increase in functionality, the speed of the ICs incorporated in them has also increased, requiring decoupling capacitors with a lower ESL placed around such ICs to ensure their stable operation.

Furthermore, to realise thin devices despite increases in the number of features and the use of larger batteries, there is growing demand for thinner electronic components to be incorporated into them. Multilayer ceramic capacitors tend to have a higher impedance and deteriorate in performance in the high frequency range, owing to ESL influence.

Three-terminal multilayer ceramic capacitors, which have a lower ESL than the popular two-terminal multilayer ceramic capacitors, have the advantage of reduced impedance in the high frequency range.

On this occasion, we have achieved an approximately 23% reduction in thickness compared to our conventional product by sophisticating materials technology and sheet lamination technique, thus realising a large capacity of 10μF and a thickness of 0.5mm at the same time with 1005-size three-terminal multilayer ceramic capacitors.

Moving forward, we will continue to make our multilayer ceramic capacitors even smaller and thinner, as well as enhance their capacitance in response to market demand.

Decoupling application for power supply lines for ICs in response to demand for smaller and thinner devices such as IoT-related devices, typified by smartphones and wearable devices.

Related

Recent Posts

Passive Components in Quantum Computing

22.1.2026
12

Miniaturization of MLCCs and Electrolytics, KAVX Tech Chat

21.1.2026
25

Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

20.1.2026
24

Conductive Polymer Capacitor Market and Design‑In Guide to 2035

20.1.2026
67

TDK Releases High Performance 105C DC Link Film Capacitors

19.1.2026
42

Vishay Extends Aluminum Capacitors Rating Up to 600 V for DC Links

15.1.2026
33

Würth Elektronik Introduces Product Navigator for Passive Components

14.1.2026
73

Panasonic Passive Components for Reliable Robotic Arms

14.1.2026
87

Littelfuse Unveils Ultra-Low-Power TMR Magnetic Switches

13.1.2026
33

Upcoming Events

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

Mar 21
All day

PSMA Capacitor Workshop 2026

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version