Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Würth Elektronik Expands its MagI³C-VDMM MicroModules

    Guerrilla RF Sponsors Modelithics Models for GaN Power Transistor Line

    Exxelia Presents Smart Integrated Magnetics Solution at Space Tech Expo 2025 

    Littelfuse Releases Load-Powered Compact Relay

    Murata Expands High Cutoff Frequency Chip Common Mode Chokes

    Transformer Design Optimization for Power Electronics Applications

    Microhardness — the Hidden Key to Understanding MnOx Cathode Quality in Tantalum Capacitors

    Samsung to Invest in its Philippine MLCC Facility to Meet Automotive Demand

    Lightweight Model for MLCC Appearance Defect Detection

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Würth Elektronik Expands its MagI³C-VDMM MicroModules

    Guerrilla RF Sponsors Modelithics Models for GaN Power Transistor Line

    Exxelia Presents Smart Integrated Magnetics Solution at Space Tech Expo 2025 

    Littelfuse Releases Load-Powered Compact Relay

    Murata Expands High Cutoff Frequency Chip Common Mode Chokes

    Transformer Design Optimization for Power Electronics Applications

    Microhardness — the Hidden Key to Understanding MnOx Cathode Quality in Tantalum Capacitors

    Samsung to Invest in its Philippine MLCC Facility to Meet Automotive Demand

    Lightweight Model for MLCC Appearance Defect Detection

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

TAIYO YUDEN Reduces the Thickness of 1005-Size Three-Terminal MLCC by 23%

26.3.2019
Reading Time: 2 mins read
A A

Source: Taiyo Yuden news

Taiyo Yuden has announced the launch of its 1005-size three terminal multilayer ceramic MLCC capacitor A3K105BBJ106MR (1.0×0.5×0.5mm, with height as the maximum value, capacitance of 10μF, and rated voltage of 4.0V). Three-terminal multilayer ceramic capacitors, which have a lower ESL than the popular two-terminal multilayer ceramic capacitors, can reduce impedance in the high frequency range and contribute to the stable operation of ICs that are driven at high speed.
The thickness of the new ceramic capacitor has been reduced by approximately 23% compared to our conventional product, A3K105KBJ106MV (1.0×0.5×0.65mm, with height as the maximum value), contributing to the further reduction in thickness of small, thin digital devices.

RelatedPosts

Würth Elektronik Expands its MagI³C-VDMM MicroModules

Guerrilla RF Sponsors Modelithics Models for GaN Power Transistor Line

Exxelia Presents Smart Integrated Magnetics Solution at Space Tech Expo 2025 

This product is to be used as a decoupling capacitor for power supply lines for ICs in response to demand for smaller and thinner devices, such as IoT-related devices, typified by smartphones and wearable devices.

Production of this multilayer ceramic capacitor will commence at the company’s Tamamura Plant (Tamamura-machi, Sawa-gun, Gunma Prefecture, Japan) starting from March 2019 at a production rate of five million units per month.

Technology background

Multilayer ceramic capacitors are placed near ICs mounted in smartphones or wearable devices for the purpose of decoupling. As devices increase in functionality, the speed of the ICs incorporated in them has also increased, requiring decoupling capacitors with a lower ESL placed around such ICs to ensure their stable operation.

Furthermore, to realise thin devices despite increases in the number of features and the use of larger batteries, there is growing demand for thinner electronic components to be incorporated into them. Multilayer ceramic capacitors tend to have a higher impedance and deteriorate in performance in the high frequency range, owing to ESL influence.

Three-terminal multilayer ceramic capacitors, which have a lower ESL than the popular two-terminal multilayer ceramic capacitors, have the advantage of reduced impedance in the high frequency range.

On this occasion, we have achieved an approximately 23% reduction in thickness compared to our conventional product by sophisticating materials technology and sheet lamination technique, thus realising a large capacity of 10μF and a thickness of 0.5mm at the same time with 1005-size three-terminal multilayer ceramic capacitors.

Moving forward, we will continue to make our multilayer ceramic capacitors even smaller and thinner, as well as enhance their capacitance in response to market demand.

Decoupling application for power supply lines for ICs in response to demand for smaller and thinner devices such as IoT-related devices, typified by smartphones and wearable devices.

Related

Recent Posts

Würth Elektronik Expands its MagI³C-VDMM MicroModules

5.11.2025
4

Microhardness — the Hidden Key to Understanding MnOx Cathode Quality in Tantalum Capacitors

3.11.2025
17

Samsung to Invest in its Philippine MLCC Facility to Meet Automotive Demand

3.11.2025
15

Lightweight Model for MLCC Appearance Defect Detection

3.11.2025
15

DMASS Reports First Positive Signs of European Distribution Market in Q3/25

3.11.2025
7

TAIYO YUDEN Releases 22uF MLCC in 0402 Size for AI Servers

3.11.2025
8

Capacitor Self-balancing in a Flying-Capacitor Buck Converter

30.10.2025
33

Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

30.10.2025
37

Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

27.10.2025
33

Samsung Releases Automotive Molded 2220 1kV C0G MLCC

23.10.2025
65

Upcoming Events

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

Nov 6
14:30 - 16:00 CET

Self-healing polymer materials for the next generation of high-temperature power capacitors

Nov 11
17:00 - 18:00 CET

Industrial Applications Demand More from Interconnects in Next-Gen Designs

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version