Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Rubycon Extends Capacitance of Polymer Hybrid Aluminum Capacitors

    VINATech Partner with ONiO to Develop Batteryless IoT Power Architecture

    Knowles Releases Inductors for Mission-Critical RF Applications

    Bourns Unveils Smallest Automotive Grade Thick Film Resistors

    Wk 28 Electronics Supply Chain Digest

    Bourns Increases Maximum Inductance Values of Semi-Shielded Power Inductors

    YAGEO Unveils Next Gen BMS Isolation Transformers

    Littelfuse Compact Tactile Switch Offers Low-Noise Switching and Dust Protection

    Murata Announces Mass Manufacturing of World’s First 0402 47µF MLCC

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Rubycon Extends Capacitance of Polymer Hybrid Aluminum Capacitors

    VINATech Partner with ONiO to Develop Batteryless IoT Power Architecture

    Knowles Releases Inductors for Mission-Critical RF Applications

    Bourns Unveils Smallest Automotive Grade Thick Film Resistors

    Wk 28 Electronics Supply Chain Digest

    Bourns Increases Maximum Inductance Values of Semi-Shielded Power Inductors

    YAGEO Unveils Next Gen BMS Isolation Transformers

    Littelfuse Compact Tactile Switch Offers Low-Noise Switching and Dust Protection

    Murata Announces Mass Manufacturing of World’s First 0402 47µF MLCC

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

TDK MLCCs: Expanded lineup of automotive-grade high-temperature applications

25.1.2017
Reading Time: 2 mins read
A A

source: TDK news

Jan. 24, 2017. TDK Corporation has expanded its CGA series of automotive-grade MLCCs for high-temperature applications: New MLCCs with X8L temperature characteristics have been introduced and the capacitance range of its existing X8R types has been extended.

RelatedPosts

Rubycon Extends Capacitance of Polymer Hybrid Aluminum Capacitors

VINATech Partner with ONiO to Develop Batteryless IoT Power Architecture

Knowles Releases Inductors for Mission-Critical RF Applications

With the new types, TDK’s lineup of X8L and X8R MLCCs features an unrivalled high capacitance range of up to 22 µF. These capacitors offer high reliability at temperatures from -55 °C to +150 °C, with a capacitance drift of just ±15 percent for the X8R types and +15/-40 percent for the X8L types. Mass production and sales of the new components is scheduled to begin in February 2017.

Increasingly automotive electronic control units are being located in the engine compartments or near other structural parts, where the electronic components must be able to withstand high temperatures and offer high reliability and performance. The new high-temperature MLCCs were made possible by the development of a new dielectric material that maintains excellent reliability even in extreme environments. To further improve reliability, the X8R dielectric material is now also available for soft-termination and conductive epoxy MLCCs, which help to prevent board flexure cracks and solder cracks caused by thermal stress. Thanks to their temperature characteristics and high capacitance values the new AEC-Q200 qualified MLCCs are suited for applications in high temperature environments such as engine compartments or in close proximity to transmission oil tanks. They also offer outstanding performance in smoothing and decoupling circuits of switch-mode power supplies for industrial equipment.

Glossary

  • Soft-termination MLCC: The terminal electrodes consist of three metallic layers (Cu, Ni, Sn) with a conductive resin layer between the Cu and Ni layers.
  • Conductive epoxy MLCC: The terminal electrodes consist of two metallic layers (Cu and AgPdCu alloy). These MLCCs can be mounted using a conductive epoxy on ceramic PCBs designed for high operating temperatures.
  • X8R temperature characteristic: -55 °C to +150 °C with a capacitance drift of ±15%
  • X8L temperature characteristic: -55 °C to +150 °C with a capacitance drift of +15% and -40%

Main applications

  • Smoothing circuits and decoupling circuits in automotive engine compartments and in switch-mode power supplies for industrial equipment

Key data

Series Case size [IEC] Rated voltage [V] Max. capacitance Temperature characteristics
CGA2 1005 (0402) 16 to 100 47 nF X8R
CGA3 1608 (0603) 6.3 to 100 2.2 µF X8R, X8L
CGA4 2012 (0805) 6.3 to 100 10 µF X8R, X8L
CGA5 3216 (1206) 4 to 100 22 µF X8R, X8L
CGA6 3225 (1210) 16 to 100 22 µF X8R, X8L

* X8R is available for both soft-termination and conductive epoxy MLCCs

Related

Recent Posts

Rubycon Extends Capacitance of Polymer Hybrid Aluminum Capacitors

16.7.2025
56

VINATech Partner with ONiO to Develop Batteryless IoT Power Architecture

16.7.2025
19

Knowles Releases Inductors for Mission-Critical RF Applications

15.7.2025
19

Bourns Unveils Smallest Automotive Grade Thick Film Resistors

14.7.2025
21

Bourns Increases Maximum Inductance Values of Semi-Shielded Power Inductors

11.7.2025
11

YAGEO Unveils Next Gen BMS Isolation Transformers

10.7.2025
21

Littelfuse Compact Tactile Switch Offers Low-Noise Switching and Dust Protection

10.7.2025
11

Murata Announces Mass Manufacturing of World’s First 0402 47µF MLCC

10.7.2025
47

Bourns Releases SMD Chip High-Power Metal Strip Current Sense Resistors in 2010 Case

10.7.2025
10

Vishay NTC Immersion Thermistor Delivers Fast Response in Liquid Cooled Automotive Systems

8.7.2025
14

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version