Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Role of High-Q Ceramic Filters to Overcome GNSS Jamming

    Optimization of IoT for GEO NB-NTN Hybrid Connectivity

    TDK Releases Automotive Power-Over-Coax Inductor for Filters

    Advanced Conversion Announces Mass Production of 200C Film Capacitors

    VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

    Bourns Introduces New Automotive Grade BMS Signal Transformer

    Hirose Unveils Compact Waterproof Version of IEC-Compliant ix Industrial Connector

    YAGEO Releases High-Sensitivity Residual Current Detectors for Safer EV Charging

    Bourns Introduces 1206 Multilayer Common Mode Filters

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Role of High-Q Ceramic Filters to Overcome GNSS Jamming

    Optimization of IoT for GEO NB-NTN Hybrid Connectivity

    TDK Releases Automotive Power-Over-Coax Inductor for Filters

    Advanced Conversion Announces Mass Production of 200C Film Capacitors

    VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

    Bourns Introduces New Automotive Grade BMS Signal Transformer

    Hirose Unveils Compact Waterproof Version of IEC-Compliant ix Industrial Connector

    YAGEO Releases High-Sensitivity Residual Current Detectors for Safer EV Charging

    Bourns Introduces 1206 Multilayer Common Mode Filters

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Titanium Carbide Graphene Hybrid Supercapacitor Match NiMh Battery Enery Density

1.2.2021
Reading Time: 3 mins read
A A
Electric lighting effect, abstract techno backgrounds for your design

Electric lighting effect, abstract techno backgrounds for your design

QUT researchers have developed a hybrid supercapacitor that offers the best of both worlds in energy storage – batteries and supercapacitors.

When it comes to the electronic devices we commonly use, energy storage is typically done in either batteries or supercapacitors, with both having their own strengths and limitations.

RelatedPosts

Role of High-Q Ceramic Filters to Overcome GNSS Jamming

Optimization of IoT for GEO NB-NTN Hybrid Connectivity

TDK Releases Automotive Power-Over-Coax Inductor for Filters

Batteries store large amounts of energy but are slower to discharge energy. Supercapacitors can only store about one-tenth of the energy of a battery but are quicker at discharging it. They are used as secondary power supply in devices such as smartphones, cameras and laptops, and have a far longer cycle life.

In research published in Advanced Materials, Associate Professor Deepak Dubal and the research team, including Professor Nunzio Motta and PhD researcher Michael Horn, developed a hybrid supercapacitor which has a capacitor-type titanium carbide-based negative electrode and a battery-type graphene-hybrid positive electrode.

The new energy storage device reaches an energy density close to that of nickel metal hydride batteries, but while also offering supercapacitor-level ultra-high power about 10 times that of lithium batteries.

“With such a unique electrode arrangement, this device is able to fill an important gap in the current low power batteries and poor energy supercapacitors, paving a way towards many more new applications”, Professor Dubal said.

Horn, who is a lead author on the study involving researchers in Australia, India and Germany, said the asymmetric arrangement of the material of the electrodes offered strong potential in energy storage development.

“Batteries often fail quickly if they are continuously cycled at high rates,” Mr Horn said.

“But even if you use modest cycling rates and low depth of discharge to get a really long life, batteries could maybe reach 5000 charge/discharge cycles.

“However, our device, after being cycled at a high current rate for 10,000 charge/discharges, retained around 90 per cent of its initial storage capacity.”

The researchers said the greatest challenge in designing the device was to balance the performance of suitable capacitor-type negative electrodes with battery-type positive electrodes in a single device. 

To meet that challenge, the QUT researchers collaborated with the team of international researchers from IIT Jammu, India (Dr Jayaram Kolleboyina) and TU Munich, Germany (Professor Roland Fischer) who developed graphene-based hybrid materials as positive electrodes.

They combined chemically-modified graphene with a nano-structured metal organic framework, known as a MOF, which provide excellent surface characteristics for an electrode.

“The beauty of this hybrid material is the synergic combination,” Professor Dubal said.

“The MOF not only acts as nano-pillars to separate the graphene layers but also stores charges through a chemical mechanism while the graphene provides electrical connections to the MOF as well as storing additional charges through a capacitive mechanism.

“It’s a win-win solution. This is a step towards energy storage solutions that are cheaper, extremely safe, and environmentally friendly as the electrolyte is water based and easy to recycle.”

Powerful Graphene Hybrid Supercapacitors Challenge NiMH Batteries and Other Supercapacitors
Researchers at RCPTM Olomouc Developed Graphene Based Materials Boosting Supercapacitors Energy and Power Density to the World Record Values

Related

Source: QUT

Recent Posts

Advanced Conversion Announces Mass Production of 200C Film Capacitors

18.6.2025
13

VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

17.6.2025
6

Chinas MLCC Makers Reach 10% Market Share

16.6.2025
45

Smoltek CNF-MIM Capacitor Commercialization Update

11.6.2025
29

Understanding Switched Capacitor Converters

9.6.2025
67

Exxelia to Present Smart Integrated Magnetics and MML Film Capacitors at SIAE25 

6.6.2025
34

Knowles Extends Range and Performance of C0G MLCC Capacitors

6.6.2025
26

Panasonic Releases New Aluminum Hybrid Capacitors with High Ripple Current in Compact Size

6.6.2025
30

5th PCNS Conference Registration Now Open!

5.6.2025
30

YAGEO Introduces Automotive Supercapacitors for Stable BMS in EVs

5.6.2025
36

Upcoming Events

Jun 24
16:00 - 17:00 CEST

Limitations of PSFB converters and improvements by a variable inductor ft. Sam Ben-Yaakov

Jun 24
17:00 - 18:00 CEST

Ultra-Compact and Efficient Switched-Capacitor Power Converters

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version