Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Littelfuse Introduces Automotive Current Sensors for EV Battery, Motor, and Safety Systems

    Vishay Releases Fast Acting Thin Film Chip Fuses

    Mechanical Testing of Tantalum Anodes to Predict Tantalum Capacitor Quality

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    SCHURTER APO Pyrofuse Brings Active Safety for High-Voltage Systems

    Coilcraft Releases Worlds Smallest 0402 Ferrite-Core Wirewound Chip Inductor

    Panasonic Releases Compact Tactile Switch with 3N Operation Force and 500K Cycles Life

    Modelithics Unveils Qorvo GaN Library v25.5.9

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Littelfuse Introduces Automotive Current Sensors for EV Battery, Motor, and Safety Systems

    Vishay Releases Fast Acting Thin Film Chip Fuses

    Mechanical Testing of Tantalum Anodes to Predict Tantalum Capacitor Quality

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    SCHURTER APO Pyrofuse Brings Active Safety for High-Voltage Systems

    Coilcraft Releases Worlds Smallest 0402 Ferrite-Core Wirewound Chip Inductor

    Panasonic Releases Compact Tactile Switch with 3N Operation Force and 500K Cycles Life

    Modelithics Unveils Qorvo GaN Library v25.5.9

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Titanium Carbide Graphene Hybrid Supercapacitor Match NiMh Battery Enery Density

1.2.2021
Reading Time: 3 mins read
A A
Electric lighting effect, abstract techno backgrounds for your design

Electric lighting effect, abstract techno backgrounds for your design

QUT researchers have developed a hybrid supercapacitor that offers the best of both worlds in energy storage – batteries and supercapacitors.

When it comes to the electronic devices we commonly use, energy storage is typically done in either batteries or supercapacitors, with both having their own strengths and limitations.

RelatedPosts

Littelfuse Introduces Automotive Current Sensors for EV Battery, Motor, and Safety Systems

Vishay Releases Fast Acting Thin Film Chip Fuses

Mechanical Testing of Tantalum Anodes to Predict Tantalum Capacitor Quality

Batteries store large amounts of energy but are slower to discharge energy. Supercapacitors can only store about one-tenth of the energy of a battery but are quicker at discharging it. They are used as secondary power supply in devices such as smartphones, cameras and laptops, and have a far longer cycle life.

In research published in Advanced Materials, Associate Professor Deepak Dubal and the research team, including Professor Nunzio Motta and PhD researcher Michael Horn, developed a hybrid supercapacitor which has a capacitor-type titanium carbide-based negative electrode and a battery-type graphene-hybrid positive electrode.

The new energy storage device reaches an energy density close to that of nickel metal hydride batteries, but while also offering supercapacitor-level ultra-high power about 10 times that of lithium batteries.

“With such a unique electrode arrangement, this device is able to fill an important gap in the current low power batteries and poor energy supercapacitors, paving a way towards many more new applications”, Professor Dubal said.

Horn, who is a lead author on the study involving researchers in Australia, India and Germany, said the asymmetric arrangement of the material of the electrodes offered strong potential in energy storage development.

“Batteries often fail quickly if they are continuously cycled at high rates,” Mr Horn said.

“But even if you use modest cycling rates and low depth of discharge to get a really long life, batteries could maybe reach 5000 charge/discharge cycles.

“However, our device, after being cycled at a high current rate for 10,000 charge/discharges, retained around 90 per cent of its initial storage capacity.”

The researchers said the greatest challenge in designing the device was to balance the performance of suitable capacitor-type negative electrodes with battery-type positive electrodes in a single device. 

To meet that challenge, the QUT researchers collaborated with the team of international researchers from IIT Jammu, India (Dr Jayaram Kolleboyina) and TU Munich, Germany (Professor Roland Fischer) who developed graphene-based hybrid materials as positive electrodes.

They combined chemically-modified graphene with a nano-structured metal organic framework, known as a MOF, which provide excellent surface characteristics for an electrode.

“The beauty of this hybrid material is the synergic combination,” Professor Dubal said.

“The MOF not only acts as nano-pillars to separate the graphene layers but also stores charges through a chemical mechanism while the graphene provides electrical connections to the MOF as well as storing additional charges through a capacitive mechanism.

“It’s a win-win solution. This is a step towards energy storage solutions that are cheaper, extremely safe, and environmentally friendly as the electrolyte is water based and easy to recycle.”

Powerful Graphene Hybrid Supercapacitors Challenge NiMH Batteries and Other Supercapacitors
Researchers at RCPTM Olomouc Developed Graphene Based Materials Boosting Supercapacitors Energy and Power Density to the World Record Values

Related

Source: QUT

Recent Posts

Mechanical Testing of Tantalum Anodes to Predict Tantalum Capacitor Quality

17.12.2025
18

Jianghai Offers Custom Bottom Cooled Screw Aluminum Capacitors

17.12.2025
26

TDK Unveils Vibration-Resistant Hybrid Polymer Aluminum Capacitors

15.12.2025
18

Samsungs Low ESL MLCCs to Power Next-Generation ADAS SoCs

10.12.2025
26

YAGEO Launches Hybrid Polymer Radial Capacitor for High-Reliability Automotive and Power Applications

10.12.2025
29

Digital Twin of a Tantalum Capacitor Anode: From Powder to Formation

8.12.2025
59

November 2025 Interconnect, Passives and Electromechanical Components Market Insights

4.12.2025
94

Skeleton Opens €220M Supercapacitor Leipzig Factory

3.12.2025
26

TAIYO YUDEN Extends Polymer Hybrid Aluminum Capacitors with Higher Ripple Current and Lower Profile

3.12.2025
35

Upcoming Events

Dec 19
12:00 - 14:00 EST

External Visual Inspection per MIL-STD-883 TM 2009

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version