Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

    Littelfuse Unveils High-Use Tactile Switches with 2 Million Cycle Lifespan

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

    Littelfuse Unveils High-Use Tactile Switches with 2 Million Cycle Lifespan

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Transformer Topologies in Power Converters

15.2.2023
Reading Time: 7 mins read
A A

This Frenetic blog article from Pablo Blázques provides introduction to the basic transformer topologies in power converters and its key features.

Usually, in all the transformer topologies, we have an input filter (inductance before the primary side of our transformer), the transformer itself and the output filter. Then, depending on the converter topology, we will have different magnetic components in our design.

RelatedPosts

Rogowski Coil Current Sensor Explained

How to Design LLC Transformer

Leakage Inductance Model; Frenetic Webinar Recording

Magnetic components

The main functionalities of magnetics in power converters are energy storage, filtering and galvanic isolation voltage/current. These functions are carried out by the inductors and transformers in the power converters. 

Inductors

Let’s start with the inductors! Their main functionalities are electrical energy storage, adaptation of the converter input and output sources and phase control of power flow through HF resonant LC stage. 

Input filter

Input inductors are wound components that generate a magnetic field to control the current changes. In case of a sudden current increase, an electromotive force is applied against the current in order to control it. While, if the current suddenly decreases, an electromotive force is applied in the same direction as the current.

Output filter

Output filters are used to remove unwanted signals at the output of our analog and digital circuits. Electrical disturbances, both man-made and natural, can affect the performance of our circuit. There are several possible configurations, and the one we chose usually depends on our insertion loss performance.

Transformer

A transformer is defined as a passive component that transfers electrical energy from one circuit to another using electromagnetic induction. The transformer has an influence on the reactive components of the power converter, therefore affecting their performance and size.

Leakage inductance

The leakage inductance is an inductive component that results from the imperfect coupling of the primary and secondary windings. It is represented as an inductance on the primary side, and it is positioned in series with the input inductance.

Magnetic Components in Transformer Topologies 

Phase-Shifted Full-Bridge (PSFB): Secondary full wave rectifier and center tap

Phase-shifted full-bridge (PSFP) converter topology is normally used for high-power applications, with the representation of leakage inductance on the primary side. For this kind of design, we can have two different design objectives:

  1. Aim at the lowest leakage possible to reduce losses in the design
  2. Aim for a specific leakage inductance to achieve Zero Voltage Switching (ZVS)
Figure 1. Phase-shifted full-bridge PSFB converter topology circuit

LLC Half bridge and Full bridge

Figure 2. LLC resonant converter topology

As in PSFB, LLC resonant converter will have the same magnetics, but for the resonant tank: used in High power applications and with the leakage inductance representation on the primary side. The LLC topology will have:

Input inductor (with two design options):

  • Use it to achieve ZVS
  • Try to reduce its value by using the leakage inductance

Output filter

  • Controls sudden changes in the output
  • Controls the voltage in the output

In LLC we need to design the resonant tank, which includes the external inductor, leakage inductance and magnetizing inductance. All these inductors, with the resonant capacitor, will influence the resonant frequency of our converter. We need to choose them wisely to make our converter work. 

Dual Active Bridge DAB

With DAB as a bidirectional isolated DC/DC converter topology, we will be able to achieve bidirectional power transfer. Due to the topology design considerations, we will have an input inductor with the leakage inductance and the magnetizing inductance.

When we switch from one direction to the current inductor that we have on the primary side, will make the current change gradually.

Figure 3. Dual Active Bridge DAB topology

Forward Converter

Figure 4. Forward converter topology

The forward converter is a DC/DC converter that uses a transformer to increase or decrease the output voltage (depending on the transformer ratio) and provide galvanic isolation for the load.

Used for low-power applications, it has an output filter to control the spikes and sudden changes at the output. Some further considerations for the forward converter:

  • The output inductor makes the design not suitable for high-voltage applications compared to the flyback, but a good fit when high output currents are required.

Flyback Converter

The flyback converter is a buck-boost converter with the inductor split to form a transformer, so that the voltage ratios are multiplied with an additional advantage of isolation. Flyback is used for low-power applications, and here the leakage inductance will be represented on the primary side. Further considerations:

  • It provides isolation from mains voltages
  • Since it doesn’t have an output inductor, as the forward topology does, we will have a high output ripple current. Therefore, Flybacks are more suitable for higher voltage applications instead of higher current.
Figure 5. Flyback converter topology

Summary

All the topologies for transformers and the flyback converters are composed of several magnetics that influence every part of the design. The key to a successful outcome is to design them correctly. 

Frenetic Online tool can have a several benefits, such as:

  • Fast iteration & design process
  • Easy access to results
  • Support provided by an engineering team expert in magnetics
  • Prototyping

By using Frenetic you can reduce the time to final designs, taking into account all the magnetic components that you can have in your designs.

Related

Source: Frenetic

Recent Posts

Modeling and Simulation of Leakage Inductance

9.5.2025
1

Power Inductor Considerations for AI High Power Computing – Vishay Video

9.5.2025
4

TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

9.5.2025
1

YAGEO Releases High Current SMD Common Mode Choke With Shape Core Construction

5.5.2025
21

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
43

Tariffs Crush Sales Sentiment in April 2025 ECST Results

5.5.2025
59

Würth Elektronik Offers New Power Supplies Development Kit

29.4.2025
37

Bourns Extends Shielded Power Inductors by Four New Series

29.4.2025
18

Shielding Cabinets

29.4.2025
17

Magnetic Shielding and Magnetic Shielding Sheets

29.4.2025
25

Upcoming Events

May 14
11:00 - 12:00 CEST

Reliable RIGID.flex PCBs for Critical Applications – Made in Europe

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Tariffs Crush Sales Sentiment in April 2025 ECST Results

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version