Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

    Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

    Bourns Releases New Current Transformer

    Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

    VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

    binder Offers Wide Range of M12 Panel Mount Connectors

    Bourns Releases New Shielded Power Inductors for DDR5

    Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

    Wk 21 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

    Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

    Bourns Releases New Current Transformer

    Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

    VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

    binder Offers Wide Range of M12 Panel Mount Connectors

    Bourns Releases New Shielded Power Inductors for DDR5

    Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

    Wk 21 Electronics Supply Chain Digest

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Wide Bandgap Materials: The Future of High Power Density, High Efficiency Circuits

5.12.2019
Reading Time: 5 mins read
A A

Philip Lessner, CTO and Chief Scientist at KEMET Electronics published overview of upcoming wide bandgap materials and how his company has been responding to these trends and requirements.

Silicon has been the leading semiconductor material for more than 50 years, and has been one of the primary building blocks of the modern computing and power electronics industries. However, the dominance of silicon in power semiconductor manufacturing may be waning as the demand grows for new devices with greater power density, energy efficiency, and heat resistance. As electronics shrink and power hungry applications like AI, VR, and vehicle electrification proliferate, these characteristics are especially important.

RelatedPosts

Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

Bourns Releases New Current Transformer

In power semiconductor innovation, where do we go from here? At least in part, the answer is a move to devices built on silicon carbide (SiC) and gallium nitride (GaN), both wide bandgap semiconductors. Bandgap refers to the energy gap between the top of the valence band and the bottom of the conduction band in semiconductor materials. This bandgap enables transistors to switch currents on and off to achieve electrical functions, and the wider the bandgap, the greater the material’s ability to operate efficiently at higher temperatures, higher voltages, and in a smaller footprint.

While KEMET doesn’t manufacture SiC or GaN semiconductors, we consider ourselves leaders in making the passive components that support wide bandgap semiconductors for power conversion circuits.

Why wide bandgap materials?

In real world applications, the primary benefit of moving to wide bandgap semiconductors made from SiC or GaN is increased efficiency of power conversion. Wide bandgap semiconductors provide between three and 10 percent higher power conversion efficiency than standard silicon emiconductors, which can be a critical power savings for battery-based applications such as electric vehicles and high power applications like server farms.

The ability of wide bandgap semiconductors to operate at high temperatures also has important consequences. Not only can they be used in higher heat situations, wide bandgap semiconductors require less cooling overall, reducing the space and expense of cooling components in the power converter. In addition, they can be operated at higher frequencies than silicon, with the implication that supporting componentry like capacitors can be smaller. In short, wide bandgap materials enable development of devices that are smaller, faster and more efficient, and able to withstand higher temperatures and voltages than silicon-based options.

GaN is used primarily in lower voltage applications, for power supplies under 500 volts or so. For instance, Anker has recently released an ultra-compact laptop and phone charger based on GaN technologies that is the size of a golf ball, with 30W output. The charger enables high-speed charging of Apple mobile and all USB-C devices, with the ability to charge iPhone X up to 50 percent in just 30 minutes. By replacing silicon with GaN, Anker was able to make charging faster while also dramatically shrinking the size of the physical charger. GaN has been used for radio frequency applications for years, but its future probably lies in miniaturization of power supplies for use cases where space and efficiency are at a premium, such as aerospace.

SiC is primarily used in higher voltage applications, from 600 to 1200 volts, and is valuable for applications such as electric vehicles, solar inverters, windmills, and other industrial and transportation use cases. SiC provides higher switching frequencies and significantly higher thermal conductivity than silicon, enabling low loss, high efficiency device operations in temperatures to 150° C and potentially even higher. Because cooling and thermal management requirements for SiC are also reduced, chip designers can also take advantage of lower system costs and smaller form factors. I foresee SiC becoming widely adopted in the electric vehicle space, as greater efficiency of power conversion can increase the range of the vehicle.

KEMET and wide bandgap technologies

KEMET is a leader in making supporting components to meet the requirements of SiC and GaN power conversion technologies. Perhaps the best example is KEMET’s KC-LINKTM surface mount capacitors, which are designed to meet the demands of fast-switching wide bandgap semiconductors that operate at high voltages, temperatures, and frequencies. These ceramic capacitors can be mounted close to SiC and GaN semiconductors in high power density applications that require minimal cooling. KC-LINK capacitors are also capable of very high frequency operations, making them a perfect match for SiC circuits. These capacitors can be stacked for higher capacitance using KEMET’s patented KONNEKT technology.

In addition to these ceramic capacitors, KEMET is also working on higher temperature film capacitors that are designed to work at the increased temperatures of wide bandgap semiconductors.

To learn more about KC-LINK capacitors, read the press release KEMET’s New KC-LINK Capacitor Series Offers Industry Leading Performance for Fast Switching Wide Bandgap Semiconductor Applications. Rather watch a video? Click here and our engineers will take you into our KAIC (KEMET Application Intelligence Center) Lab to show you how KC-LINK capacitors react under pressure, or follow this link to view a digital datasheet.  

KEMET also offers a range of magnetic components that support wide bandgap semiconductors. The newly released METCOM SMD inductor range addresses the increasing power supply density and efficiency challenges introduced by SiC and GaN materials. When it comes to size, automotive grade reliability and performance, the METCOM inductors offer very low losses in a small form factor, and are capable of operating at 155°C. METCOM are advanced metal composite inductors that can be used for both power applications as well as EMI filtering applications.

As an example of how KEMET components can support development of wide bandgap applications, we worked closely with engineers from Wolfspeed to develop a 3.3 kW high-frequency DC/DC converter using SiC MOSFETs as a power supply for telecom and server applications. The Wolfspeed engineers approached KEMET to provide the passive components for the power supply, specifically capacitors capable of withstanding higher temperatures and operating with low losses at high frequencies.

The innovative nature of the power supply design required that KEMET and Wolfspeed engineers work closely together to confirm specific technical details, some of which required additional measurements in the KEMET labs and further validation at Wolfspeed once we provided the necessary data. With close collaboration with KEMET, Wolfspeed was able to successfully demonstrate the superior performance of its new power supply based on SiC MOSFETs at frequencies up to 1 MHz, with a 50 percent volume and weight reduction of magnetic parts, and a peak efficiency of 96.5 percent.

Wide bandgap semiconductors offer significant potential for higher efficiency electronics in multiple application areas, but these new designs require careful and precise engineering to achieve successful and timely results.

Working closely with trusted fellow innovators in advanced electronics is highly recommended for newcomers to wide bandgap technologies. As our co-development with Wolfspeed demonstrates, KEMET offers extensive research facilities and laboratories to provide the customized data and materials characterization that engineers require for effective designs and development. KEMET ensures that its components are easy to design in to wide bandgap applications, because we go the extra distance to provide the data necessary to help ensure that designs are going to work according to spec and schedule.

featured image: SiC power supply, credit: Wolfspeed

Related

Source: Philip Lessner Linked In Blog

Recent Posts

Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

30.5.2025
8

Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

29.5.2025
8

Bourns Releases New Current Transformer

29.5.2025
11

Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

29.5.2025
27

VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

28.5.2025
49

Bourns Releases New Shielded Power Inductors for DDR5

29.5.2025
22

Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

26.5.2025
28

Samsung Electro-Mechanics Releases High-Capacitance MLCCs for AI Server Applications

21.5.2025
54

Samsung Electro-Mechanics Releases 165C Automotive 0806 Size Power Inductors

21.5.2025
30

Coupled Inductors Circuit Model and Examples of its Applications

21.5.2025
74

Upcoming Events

Jun 4
11:00 - 12:00 CEST

Würth Elektronik PCB Production in Asia

View Calendar

Popular Posts

  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • Capacitor Symbols

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Variable Trimmer Capacitor Explained and Selection Guide; Knowles Technical Note

    0 shares
    Share 0 Tweet 0
  • Linear Variable Differential Transformers LVDTs Explained

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version