Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Releases Components Library v25.0 for Keysight 

    How to design a 60W Flyback Transformer

    Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

    Murata Releases 008004 High-Frequency SMD Chip Inductor

    Wk 19 Electronics Supply Chain Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Releases Components Library v25.0 for Keysight 

    How to design a 60W Flyback Transformer

    Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

    Murata Releases 008004 High-Frequency SMD Chip Inductor

    Wk 19 Electronics Supply Chain Digest

    Bourns Extends Rotational Life Option for its Guitar Potentiometer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Knowles On-Demand Webinar: How RF and Microwave Filters Are Extending Peak Performance

17.2.2023
Reading Time: 3 mins read
A A

In the webinar “5 Ways Our Filters Are Extending the Norm for Peak Performance” Knowles Precision Devices reviews and challenge how some aspects of microwave technology have advanced beyond traditional assumptions. Looking at several examples on RF and Microwave filter technologies and applications, it shows some exceptions to the rules and how to spot an opportunity to challenge conventional thinking.

Thanks to material and design advances, practice can often extend beyond convention. We illustrate this point first by sharing the basics of four technologies used to build RF and Microwave Filters: lumped element filters, microstrip filters, coaxial ceramic resonator, and cavity filters. Then, we explore, and challenge, the following common assumptions about these different filters:

RelatedPosts

RF Inductors Key Characteristics and Applications

Stacked Ceramic Capacitors Improve Efficiency in Power and RF Applications

Capacitors in Pulse Forming Network

Common Assumption #1: Certain Filters Create a Certain Q Factor

Industry textbooks show a common theme, cavity filters have the highest Q factor and lumped elements have the lowest Q factor, while microstrip and coaxial fit nicely in the middle. But if you look at industry data on Q factor ranges, you see a slightly different picture as Q factor ranges become more overlapped. This is due to advances in both materials and design techniques, allowing Knowles Precision Devices, for example, to expand Microstrip beyond the conventional capabilities one would expect.

Common Assumption #2: Lumped Element Filters Aren’t Practical Beyond L Band & Are Seldom Implemented above 6 GHz

We can make lumped element filters at 20GHz. Also, these filters can be adjusted for some of the fastest and most flexible prototyping options that’s hard to match with other technologies.

Common Assumption #3: Cavity Filters are Large

Cavity filters come in many distinctive forms. Some cavity filters can be the size of a shoebox while others can fit in the palm of your hand or even the tip of your fingertip. Alternative dielectrics can be designed to reduce the size of the cavity and waveguide filter. In the webinar we look at the relationship between the physical size of a filter and its operating frequency and how ‘large’ is relative depending on the frequency of interest.

Common Assumption #4: Microstrip Filters are Low Q

We commonly see people making real-world decisions based on what the industry believes filters are capable of. The industry likes to assume microstrip filters are reserved for received or small-signal applications where size and channel count drive the need for a small custom filter but there is a lot of variability and flexibility possible with microstrip filters. There are also many factors that play a role in driving higher Q, even at high frequencies, which is important because we are using a much higher frequency spectrum than we were in the past. 

Common Assumption #5: Microstrip Filters Can’t Handle Power

A commonly believed limitation of microstrip filters is that they can’t handle more than 5 watts of power, but we’ve created microstrip filters that can actually handle up to 18 watts.

In summary, technology has improved and changed, and we need to start questioning if yesterday’s assumptions are still the case today. As shown in this webinar, we’ve started to prove that the entire industry is doing things textbooks said couldn’t be done. Download this on-demand webinar to learn more about these common misconceptions of microwave filters and see why it’s time to move past them. 

Related

Source: Knowles Precision Devices

Recent Posts

Kyocera Introducing SAW Filters for Implantable Medical and AED Applications

15.4.2025
29

Bourns Releases Automotive Grade Line Filters

1.4.2025
27

KYOCERA AVX Extends Small, High-Power, Thin-Film Band-Pass Filters

29.1.2025
36

EMC Challenges for High Speed Signal Immunity and Low EMI Power Delivery

17.1.2025
74

Interview with Murata President Norio Nakajima

16.1.2025
211

Top 10 Articles on Passive-Components in 2024

31.12.2024
250

Improving Common Mode Noise Reduction while Decreasing BOM

19.12.2024
180

Role of Filters in Expanding Bandwidth for Electronic Warfare

19.12.2024
98

Knowles Introduces Hermetic, Panel-Mount EMI Filters

31.10.2024
52

Bourns Releases Line Filter in 2.5mm Low Profile Package

29.10.2024
26

Upcoming Events

May 14
11:00 - 12:00 CEST

Reliable RIGID.flex PCBs for Critical Applications – Made in Europe

May 14
17:00 - 17:30 CEST

Calculating Foil Winding Losses with AI

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version