Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Stackpole Releases Low VCR High Voltage Chip Resistors

    June 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Wk 25 Electronics Supply Chain Digest

    Smolteks CNF MIM Capacitor Break 1 µF/mm²

    Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

    Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

    2025 Thick and Thin Film Resistor Networks Environment Overview

    Role of High-Q Ceramic Filters to Overcome GNSS Jamming

    Optimization of IoT for GEO NB-NTN Hybrid Connectivity

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Stackpole Releases Low VCR High Voltage Chip Resistors

    June 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Wk 25 Electronics Supply Chain Digest

    Smolteks CNF MIM Capacitor Break 1 µF/mm²

    Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

    Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

    2025 Thick and Thin Film Resistor Networks Environment Overview

    Role of High-Q Ceramic Filters to Overcome GNSS Jamming

    Optimization of IoT for GEO NB-NTN Hybrid Connectivity

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

First programmable memristor computer aims to bring AI processing down from the cloud

17.7.2019
Reading Time: 4 mins read
A A

Source: University of Michigan news

ANN ARBOR—The first programmable memristor computer—not just a memristor array operated through an external computer—has been developed at the University of Michigan.

RelatedPosts

Stackpole Releases Low VCR High Voltage Chip Resistors

June 2025 Interconnect, Passives and Electromechanical Components Market Insights

Wk 25 Electronics Supply Chain Digest

It could lead to the processing of artificial intelligence directly on small, energy-constrained devices such as smartphones and sensors. A smartphone AI processor would mean that voice commands would no longer have to be sent to the cloud for interpretation, speeding up response time.

“Everyone wants to put an AI processor on smartphones, but you don’t want your cell phone battery to drain very quickly,” said Wei Lu, U-M professor of electrical and computer engineering and senior author of the study in Nature Electronics.

In medical devices, the ability to run AI algorithms without the cloud would enable better security and privacy.

Why memristors are good for machine learning

The key to making this possible could be an advanced computer component called the memristor. This circuit element, an electrical resistor with a memory, has a variable resistance that can serve as a form of information storage. Because memristors store and process information in the same location, they can get around the biggest bottleneck for computing speed and power: the connection between memory and processor.

This is especially important for machine-learning algorithms that deal with lots of data to do things like identify objects in photos and videos—or predict which hospital patients are at higher risk of infection. Already, programmers prefer to run these algorithms on graphical processing units rather than a computer’s main processor, the central processing unit.

“GPUs and very customized and optimized digital circuits are considered to be about 10-100 times better than CPUs in terms of power and throughput.” Lu said. “Memristor AI processors could be another 10-100 times better.”

GPUs perform better at machine learning tasks because they have thousands of small cores for running calculations all at once, as opposed to the string of calculations waiting their turn on one of the few powerful cores in a CPU.

A memristor array takes this even further. Each memristor is able to do its own calculation, allowing thousands of operations within a core to be performed at once. In this experimental-scale computer, there were more than 5,800 memristors. A commercial design could include millions of them.

Memristor arrays are especially suited to machine learning problems. The reason for this is the way that machine learning algorithms turn data into vectors—essentially, lists of data points. In predicting a patient’s risk of infection in a hospital, for instance, this vector might list numerical representations of a patient’s risk factors.

Then, machine learning algorithms compare these “input” vectors with “feature” vectors stored in memory. These feature vectors represent certain traits of the data (such as the presence of an underlying disease). If matched, the system knows that the input data has that trait. The vectors are stored in matrices, which are like the spreadsheets of mathematics, and these matrices can be mapped directly onto the memristor arrays.

What’s more, as data is fed through the array, the bulk of the mathematical processing occurs through the natural resistances in the memristors, eliminating the need to move feature vectors in and out of the memory to perform the computations. This makes the arrays highly efficient at complicated matrix calculations. Earlier studies demonstrated the potential of memristor arrays for speeding up machine learning, but they needed external computing elements to function.

Building a programmable memristor computer

To build the first programmable memristor computer, Lu’s team worked with associate professor Zhengya Zhang and professor Michael Flynn, both of electrical and computer engineering at U-M, to design a chip that could integrate the memristor array with all the other elements needed to program and run it. Those components included a conventional digital processor and communication channels, as well as digital/analog converters to serve as interpreters between the analog memristor array and the rest of the computer.

Lu’s team then integrated the memristor array directly on the chip at U-M’s Lurie Nanofabrication Facility. They also developed software to map machine learning algorithms onto the matrix-like structure of the memristor array.

The team demonstrated the device with three bread-and-butter machine learning algorithms:

Perceptron, which is used to classify information. They were able to identify imperfect Greek letters with 100% accuracy

Sparse coding, which compresses and categorizes data, particularly images. The computer was able to find the most efficient way to reconstruct images in a set and identified patterns with 100% accuracy

Two-layer neural network, designed to find patterns in complex data. This two-layer network found commonalities and differentiating factors in breast cancer screening data and then classified each case as malignant or benign with 94.6% accuracy.

There are challenges in scaling up for commercial use—memristors can’t yet be made as identical as they need to be and the information stored in the array isn’t entirely reliable because it runs on analog’s continuum rather than the digital either/or. These are future directions of Lu’s group.

Lu plans to commercialize this technology. The study is titled, “A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations.” The research is funded by the Defense Advanced Research Projects Agency, the center for Applications Driving Architectures (ADA), and the National Science Foundation.

Featured Image: The memristor array chip plugs into the custom computer chip, forming the first programmable memristor computer. The team demonstrated that it could run three standard types of machine learning algorithms. Image credit: Robert Coelius, Michigan Engineering

 

Related

Recent Posts

Stackpole Releases Low VCR High Voltage Chip Resistors

23.6.2025
1

2025 Thick and Thin Film Resistor Networks Environment Overview

19.6.2025
24

Role of High-Q Ceramic Filters to Overcome GNSS Jamming

19.6.2025
14

Optimization of IoT for GEO NB-NTN Hybrid Connectivity

19.6.2025
8

Vishay Extends Axial Wirewound Resistors with WSZ Lead Form

12.6.2025
13

Bourns Unveils Automotive Thick Film on Steel

11.6.2025
31

TT Electronics Releases Failsafe and High Surge SMD MELF Resistors

10.6.2025
23

YAGEO Unveils PulseChip LAN Transformer

6.6.2025
20

Stackpole Offers Affordable Current Sense Chip Resistors

6.6.2025
7

5th PCNS Conference Registration Now Open!

5.6.2025
32

Upcoming Events

Jun 24
16:00 - 17:00 CEST

Limitations of PSFB converters and improvements by a variable inductor ft. Sam Ben-Yaakov

Jun 24
17:00 - 18:00 CEST

Ultra-Compact and Efficient Switched-Capacitor Power Converters

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version